
Stanford University — CS254: Computational Complexity Notes 6
Luca Trevisan January 23, 2014

Notes for Lecture 6

1 Kannan’s Theorem

Although it is open to prove that the polynomial hierarchy is not contained in P/poly, it
is not hard to prove the following result.

Theorem 1 For every polynomial p(), there is a language L ∈ Σ4 such that L 6∈ SIZE(O(p(n))).

Note that Theorem 1 is not saying that Σ4 6⊆ P/poly, because for that to be true we
would have to be able to construct a single language L such that for every polynomial p
we have L 6∈ SIZE(p(n)), instead of constructing a different language for each polynomial.
(This is an important difference: the time hierarchy theorem gives us, for every polynomial
p(), a language L ∈ P such that L 6∈ DTIME(p(n)), but this doesn’t mean that P 6= P.)

Kannan observed the following consequence of Theorem 1 and of the Karp-Lipton the-
orem.

Theorem 2 For every polynomial p(), there is a language L ∈ Σ2 such that L 6∈ SIZE(O(p(n))).

Proof: We consider two cases:

• if 3SAT 6∈ SIZE(O(p(n))); then we are done because 3SAT ∈ NP ⊆ Σ2.

• if 3SAT ∈ SIZE(O(p(n))), then NP ⊆ P/poly, so by the Karp-Lipton theorem we
have Σ4 = Σ2, and the language L ∈ Σ4 − SIZE(O(p(n))) given by Theorem 1 is in
Σ2.

2

2 Counting Classes

Recall that R is an NP-relation, if there is a polynomial time algorithm A such that
(x, y) ∈ R⇔ A(x, y) = 1 and there is a polynomial p such that (x, y) ∈ R⇒ |y| ≤ p(|x|).

Definition 3 If R is an NP relation, then #R is the problem that, given x, asks how many
y satisfy (x, y) ∈ R.

#P is the class of all problems of the form #R, where R is an NP-relation.

Observe that an NP-relation R naturally defines an NP language LR, where LR = {x :
∃y.(x, y) ∈ R}, and every NP language can be defined in this way. Therefore problems
in #P can always be seen as the problem of counting the number of witnesses for a given
instance of an NP problem.

Unlike for decision problems there is no canonical way to define reductions for counting
classes. There are two common definitions.

1

Definition 4 We say there is a parsimonious reduction from #A to #B (written #A ≤par

#B) if there is a polynomial time transformation f such that for all x, |{y, (x, y) ∈ A}| =
|{z : (f(x), z) ∈ B}|.

Often this definition is a little too restrictive and we use the following definition instead.

Definition 5 #A ≤ #B if there is a polynomial time algorithm for #A given an oracle
that solves #B.

#CSAT is the problem where given a circuit, we want to count the number of inputs that
make the circuit output 1.

Theorem 6 #CSAT is #P-complete under parsimonious reductions.

Proof: Let #R be in #P and A and p be as in the definition. Given x we want to construct
a circuit C such that |{z : C(z)}| = |{y : |y| ≤ p(|x|), A(x, y) = 1}|. We then construct Ĉn
that on input x, y simulates A(x, y). From earlier arguments we know that this can be done
with a circuit with size about the square of the running time of A. Thus Ĉn will have size
polynomial in the running time of A and so polynomial in x. Then let C(y) = Ĉ(x, y). 2

Theorem 7 #3SAT is #P-complete.

Proof: We show that there is a parsimonious reduction from #CSAT to #3SAT . That
is, given a circuit C we construct a Boolean formula φ such that the number of satisfying
assignments for φ is equal to the number of inputs for which C outputs 1. Suppose C
has inputs x1, . . . , xn and gates 1, . . . ,m and φ has inputs x1, . . . , xn, g1, . . . , gm, where the
gi represent the output of gate i. Now each gate has two input variables and one output
variable. Thus a gate can be complete described by mimicking the output for each of the
4 possible inputs. Thus each gate can be simulated using at most 4 clauses. In this way
we have reduced C to a formula φ with n + m variables and 4m clauses. So there is a
parsimonious reduction from #CSAT to #3SAT . 2

Notice that if a counting problem #R is #P-complete under parsimonious reductions,
then the associated language LR is NP-complete, because #3CSAT ≤par #R implies
CSAT ≤ LR. On the other hand, with the less restrictive definition of reducibility, even
some counting problems whose decision version is in P are #P-complete. For example, the
problem of counting the number of satisfying assignments for a given 2CNF formula and
the problem of counting the number of perfect matchings in a given bipartite graphs are
both #P-complete.

3 Complexity of counting problems

We will prove the following theorem:

Theorem 8 For every counting problem #A in #P, there is a probabilistic algorithm C
that on input x, computes with high probability a value v such that

(1− ε)#A(x) ≤ v ≤ (1 + ε)#A(x) (1)

in time polynomial in |x| and in 1
ε , using an oracle for NP.

2

The theorem says that #P can be approximate in BPPNP. We remark that approx-
imating #CSAT is NP-hard, and so to compute an approximation we need at least the
power of NP. Theorem 8 states that the power of NP and randomization is sufficient.

Another remark concerns the following result.

Theorem 9 (Toda) For every k, Σk ⊆ P#P.

This implies that #CSAT is Σk-hard for every k, i.e., #CSAT lies outside the polyno-
mial hierarchy, unless the hierarchy collapses. Recall that BPP lies inside Σ2, and hence
approximating #CSAT can be done in Σ3. Therefore, approximating #CSAT cannot be
equivalent to computing #CSAT exactly, unless the polynomial hierarchy collapses.1

We first make some observations so that we can reduce the proof to the task of proving
a simpler statement.

• It is enough to prove the theorem for #CSAT .

If we have an approximation algorithm for #CSAT , we can extend it to any #A in
#P using the parsimonious reduction from #A to #CSAT .

• It is enough to give a polynomial time O(1)-approximation for #CSAT .

Suppose we have an algorithm A and a constant c such that

1

c
#CSAT (C) ≤ A(C) ≤ c#CSAT (C). (2)

Given a circuit C, we can construct Ck = C1 ∧ C2 ∧ · · · ∧ Ck where each Ci is a copy
of C constructed using fresh variables. If C has t satisfying assignments, Ck has tk

satisfying assignments. Then, giving Ck to the algorithm we get

1

c
tk ≤ A(Ck) ≤ ctk

1

c

1/k

t ≤ A(Ck)1/k ≤ c1/kt.

If c is a constant and k = O(1ε), c
1/k ≤ 1 + ε.

• For a circuit C that has O(1) satisfying assignments, #CSAT (C) can be computed
in PNP.

This can be done by iteratively asking the oracle the questions of the form: “Are there
k assignments satisfying this circuit?” Notice that these are NP questions, because
the algorithm can guess these k assignments and check them.

1The above discussion was not very rigorous but it can be correctly formalized. In particular: (i) from the
fact that BPP ⊆ Σ2 and that approximate counting is doable in BPPNP it does not necessarily follow that
approximate counting is in Σ3, although in this case it does because the proof that BPP ⊆ Σ2 relativizes;
(ii) we have defined BPP, Σ3, etc., as classes of decision problems, while approximate counting is not a
decision problem (it can be shown, however, to be equivalent to a “promise problem,” and the inclusion
BPP ⊆ Σ2 holds also for promise problems.

3

4 Using an approximate comparison procedure

Suppose that we had available an approximate comparison procedure a-comp with the
following properties:

• If #CSAT (C) ≥ 2k+1 then a− comp(C, k) = YES with high probability;

• If #CSAT (C) < 2k then a− comp(C, k) = NO with high probability.

Given a-comp, we can construct an algorithm that 2-approximates #CSAT as described
below:

• Input: C

• compute:

– a-comp(C, 0)

– a-comp(C, 1)

– a-comp(C, 2)

–
...

– a-comp(C, n)

• if a-comp outputs NO from the first time then

– // The value is either 0 or 1 and the answer can be checked by one more query
to the NP oracle.

– Query to the oracle and output an exact value.

• else

– Suppose that it outputs YES for t = 1, . . . , i− 1 and NO for t = i

– Output 2i

We need to show that this algorithm approximates #CSAT within a factor of 2. If a-comp
answers NO from the first time, the algorithm outputs the right answer because it checks
for the answer explicitly. Now suppose a-comp says YES for all t = 1, 2, . . . , i − 1 and
says NO for t = i. Since a-compC, i− 1) outputs YES, #CSAT (C) ≥ 2i−1, and also since
a-comp(C, 2i) outputs NO, #CSAT (C) < 2i+1. The algorithm outputs a = 2i. Hence,

1

2
a ≤ #CSAT (C) < 2 · a (3)

and the algorithm outputs the correct answer with in a factor of 2.
Thus, to establish the theorem, it is enough to give a BPPNP implementation of the

a-comp procedure

4

	Kannan's Theorem
	Counting Classes
	Complexity of counting problems
	Using an approximate comparison procedure

