Notes for Lecture 5

Today we give the definition of the polynomial hierarchy and prove two results about boolean circuits and randomized algorithms.

1 Polynomial hierarchy

Remark 1 (Definition of NP and coNP) A problem is in NP if and only if there is a polynomial time computable $F(\cdot, \cdot)$ and a polynomial time bound p() such that

x is a YES-instance $\Leftrightarrow \exists y. y \in \{0,1\}^{p(|x|)} \land F(x,y)$

coNP is the class of problems whose complement (switch YES-instance to NO-instance) is in NP. Formally, a problem is in coNP if and only if there is a polynomial time computable $F(\cdot, \cdot)$ and a polynomial time bound p() such that

x is a YES-instance $\Leftrightarrow \forall y : y \in \{0, 1\}^{p(|x|)}, F(x, y)$

The polynomial hierarchy starts with familiar classes on level one: $\Sigma_1 = \mathbf{NP}$ and $\Pi_1 = co\mathbf{NP}$. For all $i \ge 1$, it includes two classes, Σ_i and Π_i , which are defined as follows:

Definition 2 Σ_k is the class of all problems such that there is a polynomial time computable $F(\cdot, ..., \cdot)$ and k polynomials $p_1(), ..., p_k()$ such that

 $x \text{ is a YES-instance} \Leftrightarrow$

$$\exists y_1 \in \{0,1\}^{p_1(|x|)} . \forall y_2 \in \{0,1\}^{p_2(|x|)} . \dots$$
$$\dots \qquad \forall \exists y_k \in \{0,1\}^{p_k(|x|)} . F(x,y_1,\dots,y_k)$$

Definition 3 Π_k is the class of all problems such that there is a polynomial time computable $F(\cdot, ..., \cdot)$ and k polynomials $p_1(), ..., p_k()$ such that

 $x \text{ is a YES-instance} \Leftrightarrow$

$$\forall y_1 \in \{0, 1\}^{p_1(|x|)} \exists y_2 \in \{0, 1\}^{p_2(|x|)} \dots$$
$$\dots \forall \exists y_k \in \{0, 1\}^{p_k(|x|)} F(x, y_1, \dots, y_k)$$

One thing that is easy to see is that $\Pi_k = co\Sigma_k$. Also, note that, for all $i \leq k - 1$, $\Pi_i \subseteq \Sigma_k$ and $\Sigma_i \subseteq \Sigma_k$. These subset relations hold for Π_k as well. This can be seen by noticing that the predicates F do not need to "pay attention to" all of their arguments, and so can represent classes lower on the hierarchy which have a smaller number of them.

Exercise 1 $\forall k. \Sigma_k$ has a complete problem.

One thing that is easy to see is that $\Pi_k = co\Sigma_k$. Also, note that, for all $i \leq k - 1$, $\Pi_i \subseteq \Sigma_k, \Sigma_i \subseteq \Sigma_k, \Pi_i \subseteq \Pi_k, \Sigma_i \subseteq \Pi_k$. This can be seen by noticing that the predicates F do not need to "pay attention to" all of their arguments, and so a statement involving k quantifiers can "simulate" a statement using less than k quantifiers.

Theorem 4 Suppose $\Pi_k = \Sigma_k$. Then $\Pi_{k+1} = \Sigma_{k+1} = \Sigma_k$.

PROOF: For any language $L \in \Sigma_{k+1}$, we have that there exist polynomials p_1, \ldots, p_{k+1} and a polynomial time computable function F such that

$$x \in L \Leftrightarrow \exists y_1. \forall y_2. \ldots Q_{k+1}y_{k+1}. F(x, y_1, \ldots, y_{k+1}) = 1$$

where we did not explicitly stated the conditions $y_i \in \{0,1\}^{p_i(|x|)}$. Let us look at the right hand side of the equation. What is following $\exists y_1$ is a Π_k statement. Thus, there is a $L' \in \Pi_k$ such that

$$x \in L \Leftrightarrow \exists y_1 \in \{0,1\}^{p_1(|x|)} (x, y_1) \in L'$$

Under the assumption that $\Pi_k = \Sigma_k$, we have $L' \in \Sigma_k$, which means that there are polynomials p'_1, \ldots, p'_k and a polynomial time computable F' such that

$$(x, y_1) \in L' \Leftrightarrow \exists z_1. \forall z_2. \ldots Q_k z_k. F'((x, y_1), z_1, \ldots, z_k) = 1$$

where we omitted the conditions $z_i \in \{0,1\}^{p'_i(|x|)}$. So now we can show that

$$\begin{aligned} x \in L \Leftrightarrow \exists y_1.(x, y_1) \in L' \\ \Leftrightarrow \exists y_1.(\exists z_1. \forall z_2. \dots Q_k z_k. F'((x, y_1), z_1, \dots, z_k) = 1) \\ \Leftrightarrow \exists (y_1, z_1). \forall z_2. \dots Q_k z_k. F''(x, (y_1, z_1), z_2, \dots, z_k) = 1) \end{aligned}$$

And so $L \in \Sigma_k$.

Now notice that if C_1 and C_2 are two complexity classes, then $C_1 = C_2$ implies $\operatorname{co} C_1 = \operatorname{co} C_2$. Thus, we have $\Pi_{k+1} = \operatorname{co} \Sigma_{k+1} = \operatorname{co} \Sigma_k = \Pi_k = \Sigma_k$. So we have $\Pi_{k+1} = \Sigma_{k+1} = \Sigma_k$. \Box

2 BPP $\subseteq \Sigma_2$

This result was first shown by Sipser and Gács. Lautemann gave a much simpler proof which we give below.

Lemma 5 If L is in **BPP** then there is an algorithm A such that for every x,

$$\mathbb{P}_{r}(A(x,r) = right \ answer) \ge 1 - \frac{1}{3m},$$

where the number of random bits $|r| = m = |x|^{O(1)}$ and A runs in time $|x|^{O(1)}$.

PROOF: Let \hat{A} be a **BPP** algorithm for L. Then for every x,

$$\mathbb{P}_{r}(\hat{A}(x,r) = \text{wrong answer}) \leq \frac{1}{3}$$

and \hat{A} uses $\hat{m}(n) = n^{o(1)}$ random bits where n = |x|.

Do k(n) repetitions of \hat{A} and accept if and only if at least $\frac{k(n)}{2}$ executions of \hat{A} accept. Call the new algorithm A. Then A uses $k(n)\hat{m}(n)$ random bits and

$$\mathbb{P}_{r}(A(x,r) = \text{wrong answer}) \le 2^{-ck(n)}$$

We can then find k(n) with $k(n) = \Theta(\log \hat{m}(n))$ such that $\frac{1}{2^{ck(n)}} \leq \frac{1}{3k(n)\hat{m(n)}}$.

Theorem 6 BPP $\subseteq \Sigma_2$.

PROOF: Let L be in **BPP** and A as in the claim. Then we want to show that

$$x \in L \iff \exists y_1, \dots, y_m \in \{0, 1\}^m \forall z \in \{0, 1\}^m \bigvee_{i=1}^m A(x, y_i \oplus z) = 1$$

where m is the number of random bits used by A on input x. Suppose $x \in L$. Then

$$\mathbb{P}_{y_1,\dots,y_m}(\exists z A(x,y_1 \oplus z) = \dots = A(x,y_m \oplus z) = 0)$$

$$\leq \sum_{z \in \{0,1\}^m} \mathbb{P}_{y_1,\dots,y_m}(A(x,y_1 \oplus z) = \dots = A(x,y_m \oplus z) = 0)$$

$$\leq 2^m \frac{1}{(3m)^m}$$

$$< 1.$$

So

$$\mathbb{P}_{y_1,\dots,y_m}\left(\forall z \bigvee_i A(x,y_i \oplus z)\right) = 1 - \mathbb{P}_{y_1,\dots,y_m}(\exists z A(x,y_1 \oplus z) = \dots = A(x,y_m \oplus z) = 0)$$

> 0.

So a sequence (y_1, \ldots, y_m) exists, such that $\forall z. \bigvee_i A(x, y_i \oplus z) = 1$. Conversely suppose $x \notin L$. Then fix a sequence (y_1, \ldots, y_m) . We have

$$\mathbb{P}_{z}\left(\bigvee_{i} A(x, y_{i} \oplus z)\right) \leq \sum_{i} \mathbb{P}_{z}\left(A(x, y_{i} \oplus z) = 1\right)$$
$$\leq m \cdot \frac{1}{3m}$$
$$= \frac{1}{3}.$$

So

$$\mathbb{P}_{z}(A(x, y_{1} \oplus z) = \dots = A(x, y_{m} \oplus z) = 0) = \mathbb{P}_{z}\left(\bigvee_{i} A(x, y_{i} \oplus z) = 0\right)$$
$$\geq \frac{2}{3}$$
$$> 0.$$

So for all $y_1, \ldots, y_m \in \{0, 1\}^m$ there is a z such that $\bigvee_i A(x, y_i \oplus z) = 0$. \Box

3 The Karp-Lipton Theorem

Theorem 7 (Karp-Lipton) If $\mathbf{NP} \subseteq \mathbf{SIZE}(n^{O(1)})$ then $\Sigma_2 = \Pi_2$ and therefore the polynomial hierarchy would collapse to its second level.

Before proving the above theorem, we first show a result that contains some of the ideas in the proof of the Karp-Lipton theorem.

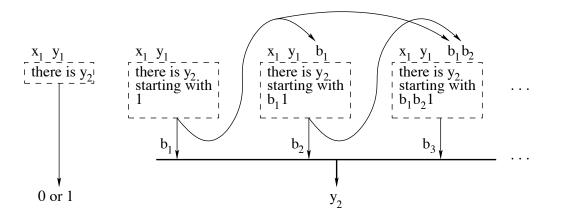
Lemma 8 If $\mathbf{NP} \subseteq \mathbf{SIZE}(n^{O(1)})$ then for every polynomial time computable $F(\cdot, \cdot)$ and every polynomial $p(\cdot)$, there is a family of polynomial size circuits such that

$$C_{|x|}(x) = \begin{cases} y : F(x,y) = 1 & \text{if such a y exists} \\ a \text{ sequence of zeroes} & \text{if otherwise} \end{cases}$$

PROOF: We define the circuits $C_n^1, \ldots, C_n^{p(n)}$ as follows:

 C_n^i , on input x and bits b_1, \ldots, b_{i-1} , outputs 1 if and only if there is a satisfying assignment for F(x, y) = 1 where $y_1 = b_1, \ldots, y_{i-1} = b_{i-1}, y_i = 1$.

Also, each circuit realizes an **NP** computation, and so it can be built of polynomial size. Consider now the sequence $b_1 = C_n^1(x)$, $b_2 = C_n^2(b_1, x)$, ..., $b_{p(n)} = C_n^{p(n)}(b_1, \ldots, b_{p(n)-1}, x)$, as shown in the following picture:



The reader should be able to convince himself that this is a satisfying assignment for F(x, y) = 1 if it is satisfiable, and a sequence of zeroes otherwise. \Box

We now prove the Karp-Lipton theorem.

PROOF: [Of Theorem 7] We will show that if $\mathbf{NP} \subseteq \mathbf{SIZE}(n^{O(1)})$ then $\Pi_2 \subseteq \Sigma_2$. By a result in a previous lecture, this implies that $\forall k \geq 2 \ \Sigma_k = \Sigma_2$.

Let $L \in \Pi_2$, then there is a polynomial $p(\cdot)$ and a polynomial-time computable $F(\cdot)$ such that

$$x \in L \leftrightarrow \forall y_1 | y_1 | \le p(|x|) \exists y_2 | \le p(|x|) F(x, y_1, y_2) = 1$$

By using Lemma 8, we can show that, for every n, there is a circuit C_n of size polynomial in n such that for every x of length n and every y_1 , $|y_1| \le p(|x|)$,

$$\exists y_2 | y_2 | \le p(|x|) \land F(x, y_1, y_2) = 1$$
 if and only if $F(x, y_1, C_n(x, y_1)) = 1$

Let q(n) be a polynomial upper bound to the size of C_n .

So now we have that for inputs x of length n,

$$x \in L \leftrightarrow \exists C | C \leq q(n) \forall y_1 | y_1 \leq p(n) F(x, y_1, C(x, y_1)) = 1$$

which shows that L is in Σ_2 . \Box