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Notes for Lecture 5

Today we give the definition of the polynomial hierarchy and prove two results about
boolean circuits and randomized algorithms.

1 Polynomial hierarchy

Remark 1 (Definition of NP and coNP) A problem is in NP if and only if there is a
polynomial time computable F (·, ·) and a polynomial time bound p() such that

x is a YES-instance⇔ ∃y. y ∈ {0, 1}p(|x|) ∧ F (x, y)

coNP is the class of problems whose complement (switch YES-instance to NO-instance) is
in NP. Formally, a problem is in coNP if and only if there is a polynomial time computable
F (·, ·) and a polynomial time bound p() such that

x is a YES-instance⇔ ∀y : y ∈ {0, 1}p(|x|), F (x, y)

The polynomial hierarchy starts with familiar classes on level one: Σ1 = NP and
Π1 = coNP. For all i ≥ 1, it includes two classes, Σi and Πi, which are defined as follows:

Definition 2 Σk is the class of all problems such that there is a polynomial time computable
F (·, ..., ·) and k polynomials p1(), ..., pk() such that

x is a YES-instance⇔

∃y1 ∈ {0, 1}p1(|x|).∀y2 ∈ {0, 1}p2(|x|). . . .

. . . ∀/∃
k is odd/even

yk ∈ {0, 1}pk(|x|). F (x, y1, . . . , yk)

Definition 3 Πk is the class of all problems such that there is a polynomial time computable
F (·, ..., ·) and k polynomials p1(), ..., pk() such that

x is a YES-instance⇔

∀y1 ∈ {0, 1}p1(|x|).∃y2 ∈ {0, 1}p2(|x|). . . .

. . . ∀/∃
k is odd/even

yk ∈ {0, 1}pk(|x|). F (x, y1, . . . , yk)

One thing that is easy to see is that Πk = coΣk. Also, note that, for all i ≤ k − 1,
Πi ⊆ Σk and Σi ⊆ Σk. These subset relations hold for Πk as well. This can be seen by
noticing that the predicates F do not need to “pay attention to” all of their arguments, and
so can represent classes lower on the hierarchy which have a smaller number of them.

Exercise 1 ∀k.Σk has a complete problem.
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One thing that is easy to see is that Πk = coΣk. Also, note that, for all i ≤ k − 1,
Πi ⊆ Σk, Σi ⊆ Σk, Πi ⊆ Πk, Σi ⊆ Πk. This can be seen by noticing that the predicates F
do not need to “pay attention to” all of their arguments, and so a statement involving k
quantifiers can “simulate” a statement using less than k quantifiers.

Theorem 4 Suppose Πk = Σk. Then Πk+1 = Σk+1 = Σk.

Proof: For any language L ∈ Σk+1, we have that there exist polynomials p1, . . . , pk+1 and
a polynomial time computable function F such that

x ∈ L⇔ ∃y1.∀y2. . . . Qk+1yk+1.F (x, y1, . . . , yk+1) = 1

where we did not explicitly stated the conditions yi ∈ {0, 1}pi(|x|). Let us look at the right
hand side of the equation. What is following ∃y1 is a Πk statement. Thus, there is a L′ ∈ Πk

such that
x ∈ L⇔ ∃y1 ∈ {0, 1}p1(|x|).(x, y1) ∈ L′

Under the assumption that Πk = Σk, we have L′ ∈ Σk, which means that there are polyno-
mials p′1, . . . , p

′
k and a polynomial time computable F ′ such that

(x, y1) ∈ L′ ⇔ ∃z1.∀z2. . . . Qkzk.F
′((x, y1), z1, . . . , zk) = 1

where we omitted the conditions zi ∈ {0, 1}p
′
i(|x|). So now we can show that

x ∈ L⇔ ∃y1.(x, y1) ∈ L′

⇔ ∃y1.(∃z1.∀z2. . . . Qkzk.F
′((x, y1), z1, . . . , zk) = 1)

⇔ ∃(y1, z1).∀z2. . . . .Qkzk.F
′′(x, (y1, z1), z2, . . . , zk) = 1)

And so L ∈ Σk.
Now notice that if C1 and C2 are two complexity classes, then C1 = C2 implies coC1 =

coC2. Thus, we have Πk+1 = coΣk+1 = coΣk = Πk = Σk. So we have Πk+1 = Σk+1 = Σk.
2

2 BPP ⊆ Σ2

This result was first shown by Sipser and Gács. Lautemann gave a much simpler proof
which we give below.

Lemma 5 If L is in BPP then there is an algorithm A such that for every x,

P
r
(A(x, r) = right answer) ≥ 1− 1

3m ,

where the number of random bits |r| = m = |x|O(1) and A runs in time |x|O(1).
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Proof: Let Â be a BPP algorithm for L. Then for every x,

P
r
(Â(x, r) = wrong answer) ≤ 1

3 ,

and Â uses m̂(n) = no(1) random bits where n = |x|.

Do k(n) repetitions of Â and accept if and only if at least
k(n)

2
executions of Â accept.

Call the new algorithm A. Then A uses k(n)m̂(n) random bits and

P
r
(A(x, r) = wrong answer) ≤ 2−ck(n).

We can then find k(n) with k(n) = Θ(log m̂(n)) such that 1
2ck(n) ≤ 1

3k(n) ˆm(n)
. 2

Theorem 6 BPP ⊆ Σ2.

Proof: Let L be in BPP and A as in the claim. Then we want to show that

x ∈ L ⇐⇒ ∃y1, . . . , ym ∈ {0, 1}m∀z ∈ {0, 1}m
m∨
i=1

A(x, yi ⊕ z) = 1

where m is the number of random bits used by A on input x.
Suppose x ∈ L. Then

P
y1,...,ym

(∃zA(x, y1 ⊕ z) = · · · = A(x, ym ⊕ z) = 0)

≤
∑

z∈{0,1}m
P

y1,...,ym
(A(x, y1 ⊕ z) = · · · = A(x, ym ⊕ z) = 0)

≤ 2m
1

(3m)m

< 1.

So

P
y1,...,ym

(
∀z
∨
i

A(x, yi ⊕ z)

)
= 1− P

y1,...,ym
(∃zA(x, y1 ⊕ z) = · · · = A(x, ym ⊕ z) = 0)

> 0.

So a sequence (y1, . . . , ym) exists, such that ∀z.
∨

iA(x, yi ⊕ z) = 1.
Conversely suppose x /∈ L. Then fix a sequence (y1, . . . , ym). We have

P
z

(∨
i

A(x, yi ⊕ z)

)
≤
∑
i

P
z

(A(x, yi ⊕ z) = 1)

≤ m · 1

3m

=
1

3
.
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So

P
z
(A(x, y1 ⊕ z) = · · · = A(x, ym ⊕ z) = 0) = P

z

(∨
i

A(x, yi ⊕ z) = 0

)

≥ 2

3
> 0.

So for all y1, . . . , ym ∈ {0, 1}m there is a z such that
∨

iA(x, yi ⊕ z) = 0. 2

3 The Karp-Lipton Theorem

Theorem 7 (Karp-Lipton) If NP ⊆ SIZE(nO(1)) then Σ2 = Π2 and therefore the poly-
nomial hierarchy would collapse to its second level.

Before proving the above theorem, we first show a result that contains some of the ideas
in the proof of the Karp-Lipton theorem.

Lemma 8 If NP ⊆ SIZE(nO(1)) then for every polynomial time computable F (·, ·) and
every polynomial p(·), there is a family of polynomial size circuits such that

C|x|(x) =

{
y : F (x, y) = 1 if such a y exists

a sequence of zeroes if otherwise

Proof: We define the circuits C1
n, . . . , C

p(n)
n as follows:

Ci
n, on input x and bits b1, . . . , bi−1, outputs 1 if and only if there is a satisfying assign-

ment for F (x, y) = 1 where y1 = b1, . . . , yi−1 = bi−1, yi = 1.
Also, each circuit realizes an NP computation, and so it can be built of polynomial size.

Consider now the sequence b1 = C1
n(x), b2 = C2

n(b1, x), . . ., bp(n) = C
p(n)
n (b1, . . . , bp(n)−1, x),

as shown in the following picture:

x1 1y
there is y
starting with
1

2

x1 1y
there is y2

y2

x1 1y 1b x1 1y 2b1b

1b 2b

. . .

. . .

there is y
starting with2

b 1

there is y
starting with
b b 1

2

1 1 2

3b

0 or 1

The reader should be able to convince himself that this is a satisfying assignment for
F (x, y) = 1 if it is satisfiable, and a sequence of zeroes otherwise. 2
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We now prove the Karp-Lipton theorem.

Proof: [Of Theorem 7] We will show that if NP ⊆ SIZE(nO(1)) then Π2 ⊆ Σ2. By a
result in a previous lecture, this implies that ∀k ≥ 2 Σk = Σ2.

Let L ∈ Π2, then there is a polynomial p(·) and a polynomial-time computable F (·)
such that

x ∈ L↔ ∀y1.|y1| ≤ p(|x|)∃y2.|y2| ≤ p(|x|).F (x, y1, y2) = 1

By using Lemma 8, we can show that, for every n, there is a circuit Cn of size polynomial
in n such that for every x of length n and every y1, |y1| ≤ p(|x|),

∃y2.|y2| ≤ p(|x|) ∧ F (x, y1, y2) = 1 if and only if F (x, y1, Cn(x, y1)) = 1

Let q(n) be a polynomial upper bound to the size of Cn.
So now we have that for inputs x of length n,

x ∈ L↔ ∃C.|C| ≤ q(n).∀y1.|y1| ≤ p(n).F (x, y1, C(x, y1)) = 1

which shows that L is in Σ2. 2
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