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Notes for Lecture 5

Today we give the definition of the polynomial hierarchy and prove two results about
boolean circuits and randomized algorithms.

1 Polynomial hierarchy

Remark 1 (Definition of NP and coNP) A problem is in NP if and only if there is a
polynomial time computable F(-,-) and a polynomial time bound p() such that

x is a YES-instance < Jy. y € {0, 1}1’(‘”') A F(x,y)

coNP is the class of problems whose complement (switch YES-instance to NO-instance) is
in NP. Formally, a problem is in coNP if and only if there is a polynomial time computable
F(-,-) and a polynomial time bound p() such that

zis a YES-instance < Vy : y € {0, 1}P07) F(z,y)

The polynomial hierarchy starts with familiar classes on level one: >»; = NP and
II; = coNP. For all 7 > 1, it includes two classes, ¥; and II;, which are defined as follows:

Definition 2 X is the class of all problems such that there is a polynomial time computable
F(-,...,+) and k polynomials p1(), ...,px() such that

z is a YES-instance <

Jy1 € {0, 1371070y, e 0, 1322020
v/El Yk € {O’l}pk(‘mn F(x7y17--')yk)

k is odd/even

Definition 3 Il is the class of all problems such that there is a polynomial time computable
F(-,...,) and k polynomials p1(), ...,px() such that

z is a YES-instance <
vy1 € {0,137102D 3y € {0, 132020
v/El Yk € {0,1}Pk(‘$|) F(:Evyl""7yk)

k is odd/even
One thing that is easy to see is that II; = coXj. Also, note that, for all i < k — 1,
II; € ¥ and ¥; C Y. These subset relations hold for Il as well. This can be seen by
noticing that the predicates F' do not need to “pay attention to” all of their arguments, and
so can represent classes lower on the hierarchy which have a smaller number of them.

Exercise 1 Vk.X; has a complete problem.



One thing that is easy to see is that Il = coX. Also, note that, for all i« < k — 1,
II; C X, ¥; C X, IT; C I, ¥; C IIg. This can be seen by noticing that the predicates F'
do not need to “pay attention to” all of their arguments, and so a statement involving k
quantifiers can “simulate” a statement using less than k quantifiers.

Theorem 4 Suppose 11, = Xy. Then i1 = X1 = 2.

ProoOF: For any language L € Y1, we have that there exist polynomials p1, ..., pg+1 and
a polynomial time computable function F such that

r€ L& yVyz. - Qriryrsr - F(o, 91, Yk1) = 1

where we did not explicitly stated the conditions y; € {0,112 Let us look at the right
hand side of the equation. What is following Jy; is a I, statement. Thus, there is a L’ € Ty
such that

rel e Ty e{0,1}0D (z,4) el

Under the assumption that IT; = X, we have L' € X, which means that there are polyno-
mials p}, ..., p}, and a polynomial time computable F” such that

(.%', yl) S L, == Hzl.v,Zg. . QkaF/((.CE, yl), Zlye ,Zk) =1
where we omitted the conditions z; € {0,1}#:(?]) So now we can show that

r € L& Jy.(v,y) el
& 1.3 Ve o Qrze F (2, y1), 21, - -5 26) = 1)
< I(y1,21) Vo o Qrap F' (2, (Y1, 21), 29, - ., 2) = 1)
And so L € X
Now notice that if C; and Cy are two complexity classes, then C; = Cy implies coC; =

coCy. Thus, we have Il = coXgy1 = codp = Il = Xg. So we have i = X = Xg.
O

2 BPP C),

This result was first shown by Sipser and Géacs. Lautemann gave a much simpler proof
which we give below.

Lemma 5 If L is in BPP then there is an algorithm A such that for every x,

P(A(z,7) = right answer) > 1 — 21,

3Im
r

where the number of random bits |r| = m = |z|°0) and A runs in time |z|O0).



PROOF: Let A be a BPP algorithm for L. Then for every =,

P(A(x,7) = wrong answer) < 1,
T

and A uses 7 (n) = n°1) random bits where n = |z|.

2

Call the new algorithm A. Then A uses k(n)m(n) random bits and

Do k(n) repetitions of A and accept if and only if at least executions of A accept.

P(A(x,r) = wrong answer) < 9—ck(n)

T

We can then find k(n) with k(n) = O(logm(n)) such that 26,}(,0 < 3k(n)1m(n). O

Theorem 6 BPP C 5.

PRrROOF: Let L be in BPP and A as in the claim. Then we want to show that
m

reLl < Ty,...,ym €{0,1}"Vz € {O,I}m\/A(a:,yieBz) =1
i=1

where m is the number of random bits used by A on input z.
Suppose x € L. Then

P (Ele(:c,yl@z)::A(x,ym@z):())
yl?"'7ym

ze{o1ym Yl

1
<2m
- @Bmm
< 1.
So
P (Vz\/A(a:,yi @z)) =1—- P (FzA(z,y1®2)=---=A(x,ym ®2) =0)
Y1oYm ; Y1peYm
> 0.

So a sequence (Y1, ..., Ym) exists, such that Vz.\/, A(z,y; @ 2) = 1.
Conversely suppose x ¢ L. Then fix a sequence (y1,...,Ym). We have

P (\/A(ﬂ?,yi ® z)) < Z]E’(A(%yi ©z)=1)
1

<
- 3m

w'\)—l 3



So
P(A(x’yl EBZ) == A($aym@z) = O)

z

P (\/A($,yi G z) = 0)

\VAR Y
S Wl

So for all y1,...,ym € {0,1}" there is a z such that \/, A(z,y; ® z) = 0. O

3 The Karp-Lipton Theorem

Theorem 7 (Karp-Lipton) If NP C SIZE(n®(M) then ¥y = Iy and therefore the poly-
nomial hierarchy would collapse to its second level.

Before proving the above theorem, we first show a result that contains some of the ideas
in the proof of the Karp-Lipton theorem.

Lemma 8 If NP C SIZE(n®W) then for every polynomial time computable F(-,-) and
every polynomial p(-), there is a family of polynomial size circuits such that

y: F(z,y) =1 if such a y exists
Clg|(7) = {

a sequence of zeroes if otherwise
PROOF: We define the circuits C}, ..., C,’;(”) as follows:
C?, on input x and bits by, ...,b;_1, outputs 1 if and only if there is a satisfying assign-

ment for F(z,y) =1 where y1 =b1,...,yi—1 = bj—1,y; = 1.

Also, each circuit realizes an NP computation, and so it can be built of polynomial size.
Consider now the sequence by = CL(z), by = C2(b1, ), -, by = CE™ (b1, ..., by(my—1, %),
as shown in the following picture:

oo BN IR R T KN biby
I there is y,! i thereisy, 1 i thereisy, i thereisy,
i : starting with : : starting with : : starting with :

I 1 I | bl1 I | b1b21 |

_— = [ I — _— =

- - - =

b,

)

Oorl Y,

The reader should be able to convince himself that this is a satisfying assignment for
F(z,y) =1 if it is satisfiable, and a sequence of zeroes otherwise. O



We now prove the Karp-Lipton theorem.

PrROOF: [Of Theorem 7] We will show that if NP C SIZE(n®(M) then II, C Xy. By a
result in a previous lecture, this implies that Vk > 2 > = Y.

Let L € Ilg, then there is a polynomial p(-) and a polynomial-time computable F(-)
such that

z € L < Vyr.|yi| < p(lz])3ya-ly2| < p([z])-F(z,p1,92) =1
By using Lemma 8, we can show that, for every n, there is a circuit C,, of size polynomial
in n such that for every x of length n and every y1, |y1] < p(|z|),
Fy2-ly2| < p(|z]) A F(x,y1,y2) = 1 if and only if F(z,y1, Cn(z,51)) =1
Let ¢(n) be a polynomial upper bound to the size of C,,.
So now we have that for inputs x of length n,
x € L+ 3C|C| < q(n).Yy1.ly1| < p(n).F(z,y1,C(z,y1)) = 1

which shows that L is in Yo. O
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