
Stanford University — CS254: Computational Complexity Notes 4
Luca Trevisan January 16, 2014

Notes for Lecture 4

In this lecture we prove that P 6= NP with probability 1 relative to a random oracle,
we talk about randomized algorithms, and we show that Boolean circuits can simulate
randomized algorithms.

1 Relativizations

With a few significant exceptions, all known results about complexity classes “relativize,”
meaning that the results remain true if one replaces the complexity classes involved in the
result with the respective classes relative to an oracle A, for every choose of A. Certain
complexity theoretic statements, however, cannot relativize, because they are true relative to
certain oracles and false relative to certain other oracles; it then follows that such statements
cannot be proved or disproved using relativizing techniques. This is an important bottleneck
to progress in complexity theory.

We now define the above notions. An oracle Turing machine M operating with an oracle
A is a machine, that has an extra tape, called the oracle tape, and a special state, called the
query state. When the machine enter the query state, at the next step the state encodes
whether or not the content of the oracle tape is an element of A or not. Informally, an oracle
Turing machine M operating with an oracle A formalizes an algorithm that is allowed to
use, at unit cost per execution, a subroutine the checks membership in A.

If A is a language, we denote by PA the class of languages that can be solved in polyno-
mial time by oracle Turing machines operating with the oracle A. (This can also be thought
as the class of languages that can be reduced to A by polynomial time reductions.) We
can similarly define the relativized analogs of every other complexity class whose definition
involves time-limited deterministic machine, such as EXP, DTIME(t(n)) and so on.

We “relativize” the definition of NP in the following way. We say that a language L is
in NPA if there is a relation R and a polynomial q(·) such that membership in R can be
checked in polynomial time by an oracle machine with oracle A, and such that

x ∈ L⇔ ∃y.|y| ≤ p(|x|) ∧ (x, y) ∈ R .

Notation such as PA or NPA obscure a subtle point that can possibly cause confusion.
“Relativization” is not an operation that is applied to a complexity class, such as NP,
and to an oracle A to produce the relativized class NPA. Instead what we “relativize”
is a specific machine-based definition of NP, and we obtain the class NPA by replacing
the Turing machines occurring in the machine-based definition with oracle Turing machines
having oracle A.1

1Here is why this distinction is important: if relativization was an operation on complexity classes, then
we would have that P = NP would imply PA = NPA for every oracle A, and exhibiting an oracle B such
that PB 6= NPB would imply P 6= NP. Instead, in the next section we will show that such an oracle B
exists, and this has no implication on the status of the P versus NP problem.

1

If A is a PSPACE-complete problem, then it is easy to see that PA = NPA =
PSPACE. This means that it is not possible to prove P 6= NP using relativizing tech-
niques. We will now show that there is an oracle B such that PB 6= NPB. In fact we will
show more: that if B is a randomly chosen oracle, the probability that PB = NPB is zero.

2 Separating P and NP with a Random Oracle

We prove the following result.

Theorem 1

P
R

[PR 6= NPR] = 1

where the probability is taken over a random oracle R ⊆ {0, 1}∗.

(Note that the probability space of all possible languages R is a continuous space, and
so if something happens with probability 1 it does not mean that it happens for all possible
R.)

Let us discuss first the intuition of the proof. Imagine first that, instead of having
access to a random oracle selected according to the uniform distribution, we have access to
an oracle such that, for every n, with probability 1/2 there is no string of length n in R,
and with probability 1/2 there is exactly one (randomly chosen) string of length n in R,
and that, given n, and given access to the oracle, we want to find out which case holds, in
time polynomial in n. This is an “NP-type” problem, because a witness of the fact that
there is a string of length n in the oracle is a string of length n in the oracle (the validity of
the witness can be verified with one oracle query). It seems impossible, however, to solve
the problem deterministically in time polynomial in n: whether there is a string of length
n in the oracle or not, with high probability a polynomial time algorithm will only get NO
answers from the oracle, for all its queries of length n. But the output of the algorithm
depends only on the answers from the oracle, so, conditioned on getting all “NO” answers,
the algorithm will give the same answer whether a string of length n is in the oracle or not,
and so it will be incorrect with probability approximately 1/2.

There a few adjustments that we need to make to the above argument: we need to
define a computational problem where the input is a string of length n rather than the
number n, we need to make the reasoning work relative to a uniformly random oracle, and
we need to be able to first pick a random oracle, and then rule out all possible polynomial
time algorithms (in the informal argument, we are fixing the polynomial time algorithm
first and then we pick the random oracle); finally, we want the probability of the existence
of a polynomial time algorithm for our hard problem to be zero.

For every oracle R, we define the language LR in the following way: a bit string x of
length n belongs to LR if and only if there exists a bit string y also of length n such that
for all bits strings z of length log n we have that xyz ∈ R, where xyz is the concatenation
(of length 2n+ log n) of the three strings x, y, and z.

The point is that, for a fixed x of length n, if we pick a random oracle R, then in
order to have x ∈ LR we need at least one of 2n possible conditions (corresponding to the
choice of y) to be true, and each possibility has probability 2−n of being true (because it

2

corresponds to the event that a certain set of n strings all belong to the oracle). So x has
probability 1− (1− 1/2n)2n ≈ 1− 1/e of being in LR and probability ≈ 1/2 of not being in
LR. Furthermore, we have:

Fact 2 For every oracle R, the language LR is in NPR

Proof: A witness that x ∈ LR is a string y such that xyz ∈ LR for all z, and this condition
can be tested with n oracle queries. 2

Note that if x ∈ LR then we expect a small number of witnesses of this fact, so we
are in a setup that is fairly similar to the one described above. (With constant probability
x ∈ LR, with constant probability x 6∈ LR, and the number of witnesses is very small.)

We begin by proving the following weak fact.

Lemma 3 Let M be a polynomial time oracle machine. Then, for all sufficiently large n
and all x of length n we have

P
R

[MR(x) = LR(x)] ≤ 2

3

Proof: Let M ′ be the machine that behaves like M except that, if it asks the query xyz
where |x| = |y| = n and |z| = log n then it also asks the queries xyz′ for every z′ ∈ {0, 1}logn.
Note that M ′ is still a polynomial time machine, and let p(n) be a polynomial upper bound
to the queries asked by M ′ given an input of length n. Without loss of generality, we can
assume that M ′ makes exactly p(n) oracle queries on inputs of length n (otherwise make
additional oracle queries and ignore the answers). A “transcript” c of a computation of
M ′R(x) is a description of all the answers to the p(n) oracle queries asked by M ′. Note
that, even if M ′ asks its questions adaptively, and so there are up to 2p(n) questions that
can possibly be asked, and each one has two possible answers, the total number of valid
transcripts is only 2p(n), and each one has probability 1/2p(n).

An oracle R is consistent with a transcript c if all the oracle queries and answers reported
in c agree with R. Note that if M ′R(x) has transcript c, and R′ is consistent with c, then
the output of M ′R(x) is the same as the output of M ′R

′
(x).

Given a transcript c, we can consider the conditional distribution of a random oracle R
given c; this is just the distribution of an oracle that agrees with the answers recorded in c
for the p(n) queries of c, and is random on all other inputs.

We say that a transcript c is inconclusive for x if it contains no query xyz where y is a
valid witness that x ∈ LR.

We make the following two claims

P
R

[M ′R(x) has an inconclusive transcript] ≥ 1− nO(1)

2n
(1)

If c is an inconclusive transcript of M ′ on input x,

P
R

[x ∈ LR | R consistent with c] = 1− 1

e
+ o(1) (2)

3

Regarding the first claim, imagine the process of running the computation of M ′R(x) and
of “picking R randomly along the way” by just making random decisions for which of the
queries of M ′ are in R and which are not, and delaying every other decision. Every time
M ′ makes a block of queries of the form xyz with z ∈ {0, 1}logn, there is probability 1/2n

that y is a witness for x. M ′ makes p(n)/n) such query blocks, and so, by a union bound,
the probability that it queries a witness of x (thus creating a non-inconclusive witness) is
at most p(n)/(n · 2n) = nO(1)/2n.

Regarding the second claim, let c be an inconclusive transcript, and consider the selection
of a random R consistent with c. Each of the 2n−nO(1) strings y for which no query xyz is
in the transcript has probability 1/2n of becoming a witness that x ∈ LR, and the strings y
for which the queries xyz are in the transcript are definitely not going to be witnesses. So
the probability that x 6∈ LR is precisely(

1− 1

2n

)2n−nO(1)

=
1

e
− o(1)

Having proved the two claims, the statement of the lemma follows easily: let us pick
a random oracle R by first picking a random transcript of M ′(x) and then a random R
consistent with c. When we pick c, we have 1− o(1) of picking an inconclusive one; once we
have picked such a transcript, the output of M ′R(x) depends only on c, and it is the same
for all R consistent with c; but for a 1/e− o(1) fraction of R the correct answer is “reject”
and for a 1− 1/e+ o(1) fraction the correct answer is “accept,” and so M ′R(x) is going to
be wrong with probability at least 1/e− o(1), which is more than 1/3 for sufficiently large
n. 2

We now make the following stronger claim.

Lemma 4 Let M be a polynomial time oracle machine. Then, for all sufficiently large n
and all x1, . . . , xn, each of length n, we have

P
R

[MR(x1) = LR(x1) ∧ · · · ∧MR(xn) = L(xn)] ≤
(

2

3

)n
Proof: Let M ′ be an oracle machine such that M ′R simulates MR(x1), MR(x2), . . . ,
MR(xn) and then returns the outputs of the n simulations; furthermore, if M ′ makes a query
of the form xiyz, then it also makes all the queries of the form xiyz

′ for all z′ ∈ {0, 1}logn.
Finally, assume that M ′ always makes the same number of queries for every oracle, and let
this number of queries be p(n). We refer to a transcript of M ′ as a record of all the oracle
queries and answers. As before, there are 2p(n) valid transcripts, and they are all equally
likely.

We say that a transcript is inconclusive if it contains no query xiyz where y is a valid
witness for xi. (That is, the transcript is inconclusive, according to the definition in the
previous lemma, for all the xi.)

As before, if we pick a random transcript, then it is inconclusive with probability at least
1−nO(1)/2n. If a transcript c is inconclusive, and we sample a random R consistent with c,
then each xi has, independently, probability 1/e− o(1) of not being in LR and probability
1− 1/e+ o(1) of being in LR. Overall, it follows that

4

P
R

[MR(x1) = LR(x1) ∧ · · · ∧MR(xn) = L(xn)] ≤
(

1− 1

e
+ o(1)

)n
+
nO(1)

2n
≤
(

2

3

)n
for large enough n. 2

Now, let us fix a polynomial time machine M ; then for each sufficiently large n we have

P
R

[MR correctly decides LR] ≤
(

2

3

)n
and since this is true for every sufficiently large n we have to conclude that

P
R

[MR correctly decides LR] = 0

Finally, let M be the (countable) set of all polynomial time oracle machines, then

P
R

[LR ∈ PR] = P
R

[∃M ∈M.M decides LR]

≤
∑
M∈M

P[M decides LR] = 0

where we use countable additivity of the uniform distribution over random oracles.

3 Randomized Algorithms

First we are going to describe the probabilistic model of computation. In this model an
algorithm A gets as input a sequence of random bits r and the ”real” input x of the problem.
The output of the algorithm is the correct answer for the input x with some probability.

Definition 5 An algorithm A is called a polynomial time probabilistic algorithm if the size
of the random sequence |r| is polynomial in the input |x| and A() runs in time polynomial
in |x|.

If we want to talk about the correctness of the algorithm, then informally we could say that
for every input x we need P[A(x, r) = correct answer for x] ≥ 2

3 . That is, for every input
the probability distribution over all the random sequences must be some constant bounded
away from 1

2 . Let us now define the class BPP.

Definition 6 A decision problem L is in BPP if there is a polynomial time algorithm A
and a polynomial p() such that :

∀x ∈ L P
r∈{0,1}p(|x|)

[A(x, r) = 1] ≥ 2/3

∀x 6∈ L P
r∈{0,1}p(|x|)

[A(x, r) = 1] ≤ 1/3

We can see that in this setting we have an algorithm with two inputs and some con-
straints on the probabilities of the outcome. In the same way we can also define the class
P as:

5

Definition 7 A decision problem L is in P if there is a polynomial time algorithm A and
a polynomial p() such that :

∀x ∈ L : P
r∈{0,1}p(|x|)

[A(x, r) = 1] = 1

∀x 6∈ L : P
r∈{0,1}p(|x|)

[A(x, r) = 1] = 0

Similarly, we define the classes RP and ZPP.

Definition 8 A decision problem L is in RP if there is a polynomial time algorithm A and
a polynomial p() such that:

∀x ∈ L P
r∈{0,1}p(|x|)

[A(x, r) = 1] ≥ 1/2

∀x 6∈ L P
r∈{0,1}p(|x|)

[A(x, r) = 1] ≤ 0

Definition 9 A decision problem L is in ZPP if there is a polynomial time algorithm A
whose output can be 0, 1, ? and a polynomial p() such that :

∀x P
r∈{0,1}p(|x|)

[A(x, r) =?] ≤ 1/2

∀x,∀r such that A(x, r) 6=?.(A(x, r) = 1 ⇔ x ∈ L)

4 Relations between complexity classes

After defining these probabilistic complexity classes, let us see how they are related to other
complexity classes and with each other.

Theorem 10 RP⊆NP.

Proof: Suppose we have a RP algorithm for a language L. Then this algorithm is can
be seen as a “verifier” showing that L is in NP. If x ∈ L then there is a random sequence
r, for which the algorithm answers yes, and we think of such sequences r as witnesses that
x ∈ L. If x 6∈ L then there is no witness. 2

We can also show that the class ZPP is no larger than RP.

Theorem 11 ZPP⊆RP.

Proof: We are going to convert a ZPP algorithm into an RP algorithm. The construction
consists of running the ZPP algorithm and anytime it outputs ?, the new algorithm will
answer 0. In this way, if the right answer is 0, then the algorithm will answer 0 with
probability 1. On the other hand, when the right answer is 1, then the algorithm will give
the wrong answer with probability less than 1/2, since the probability of the ZPP algorithm
giving the output ? is less than 1/2. 2

Another interesting property of the class ZPP is that it’s equivalent to the class of
languages for which there is an average polynomial time algorithm that always gives the
right answer. More formally,

6

Theorem 12 A language L is in the class ZPP if and only if L has an average polynomial
time algorithm that always gives the right answer.

Proof: First let us clarify what we mean by average time. For each input x we take the
average time of A(x, r) over all random sequences r. Then for size n we take the worst time
over all possible inputs x of size |x| = n. In order to construct an algorithm that always
gives the right answer we run the ZPP algorithm and if it outputs a ?, then we run it again.
Suppose that the running time of the ZPP algorithm is T , then the average running time
of the new algorithm is:

Tavg =
1

2
· T +

1

4
· 2T + . . .+

1

2k
· kT = O(T)

Now, we want to prove that if the language L has an algorithm that runs in polynomial
average time t(|x|), then this is in ZPP. We run the algorithm for time 2t(|x|) and output
a ? if the algorithm has not yet stopped. It is straightforward to see that this belongs to
ZPP. First of all, the worst running time is polynomial, actually 2t(|x|). Moreover, the
probability that our algorithm outputs a ? is less than 1/2, since the original algorithm has
an average running time t(|x|) and so it must stop before time 2t(|x|) at least half of the
times. 2

Let us now prove the fact that RP is contained in BPP.

Theorem 13 RP⊆BPP

Proof: We will convert an RP algorithm into a BPP algorithm. In the case that the input
x does not belong to the language then the RP algorithm always gives the right answer, so
it certainly satisfies that BPP requirement of giving the right answer with probability at
least 2/3. In the case that the input x does belong to the language then we need to improve
the probability of a correct answer from at least 1/2 to at least 2/3.

Let A be an RP algorithm for a decision problem L. We fix some number k and define
the following algorithm:

• input: x,

• pick r1, r2, . . . , rk

• if A(x, r1) = A(x, r2) = . . . = A(x, rk) = 0 then return 0

• else return 1

Let us now consider the correctness of the algorithm. In case the correct answer is 0 the
output is always right. In the case where the right answer is 1 the output is right except
when all A(x, ri) = 0.

if x 6∈ L P
r1,...,rk

[Ak(x, r1, . . . , rk) = 1] = 0

7

if x ∈ L P
r1,...,rk

[Ak(x, r1, . . . , rk) = 1] ≥ 1−
(

1

2

)k
It is easy to see that by choosing an appropriate k the second probability can go arbitrarily
close to 1. In particular, choosing k = 2 suffices to have a probability larger than 2/3, which
is what is required by the definition of BPP. In fact, by choosing k to be a polynomial in
|x|, we can make the probability exponentially close to 1. This means that the definition of
RP that we gave above would have been equivalent to a definition in which, instead of the
bound of 1/2 for the probability of a correct answer when the input is in the language L,

we had have a bound of 1−
(

1
2

)q(|x|)
, for a fixed polynomial q. 2

5 Adleman’s Theorem

Let, now, A be a BPP algorithm for a decision problem L. Then, we fix k and define the
following algorithm A(k):

• input: x

• pick r1, r2, . . . , rk

• c =
∑k

i=1A(x, ri)

• if c ≥ k
2 then return 1

• else return 0

IIf we start from a randomized algorithm that provides the correct answer only with
probability slightly higher than half, then repeating the algorithm many times with inde-
pendent randomness will make the right answer appear the majority of the times with very
high probability.

More formally, we have the following theorem.

Theorem 14 (Chernoff Bound) Suppose X1, . . . , Xk are independent random variables
with values in {0, 1} and for every i, P[Xi = 1] = pi. Then, for any ε > 0:

P

[
k∑
i=1

Xi >

k∑
i=1

pi + kε

]
< e−2ε2k

P

[
k∑
i=1

Xi <
k∑
i=1

pi − kε

]
< e−2ε2k

The Chernoff bounds will enable us to bound the probability that our result is far from the
expected. Indeed, these bounds say that this probability is exponentially small with respect
to k.

8

Let us now consider how the Chernoff bounds apply to the algorithm we described
previously. We fix the input x and call p = Pr[A(x, r) = 1] over all possible random
sequences. We also define the independent 0/1 random variables X1, . . . , Xk such that
Xi = 1 if and only if A(x, ri) outputs the correct answer.

First, suppose x ∈ L. Then the algorithm A(k)(x, r1, . . . , rk) outputs the right answer
1, when

∑
iXi ≥ k/2. So, the algorithm makes a mistake when

∑
iXi < k/2.

We now apply the Chernoff bounds to bound this probability.

P[A(k)outputs the wrong answer on x]

= P[
∑
i

Xi <
k
2]

≤ P[
∑
i

Xi − kp ≤ −k
6]

≤ e−k/18

= 2−Ω(k)

The probability is exponentially small in k. The same reasoning applies also for the
case where x 6∈ L. Further, it is easy to see that by choosing k to be a polynomial in |x|
instead of a constant, we can change the definition of a BPP algorithm and instead of the
bound of 1

3 for the probability of a wrong answer, we could equivalently have a bound of

1/2− 1/q(|x|) or 2−q(|x|), for a fixed polynomial q.
Would it be equivalent to have a bound of 1/2− 2−q(|x|)?

Definition 15 PP is the set of problems that can be solved by a nondeterministic Turing
machine in polynomial time where the acceptance condition is that a majority (more than
half) of computation paths accept.

Although superficially similar to BPP, PP is a very powerful class; PPP (polynomial
time computations with an oracle for PP) includes all of NP, quantum polynomial time
BQP, and the entire polynomial hierarchy Σ1 ⊆ Σ2 ⊆ . . . which we will define later.

Now, we are going to see how the probabilistic complexity classes relate to circuit com-
plexity classes and specifically prove that the class BPP has polynomial size circuits.

Theorem 16 (Adleman) BPP ⊆ SIZE(nO(1))

Proof: Let L be in the class BPP. Then by definition, there is a polynomial time algorithm
A and a polynomial p, such that for every input x

P
r∈{0,1}p(|x|)

[A(x, r) = wrong answer for x] ≤ 2−(n+1)

This follows from our previous conclusion that we can replace 1
3 with 2−q(|x|). We now fix

n and try to construct a circuit Cn, that solves L on inputs of length n.

Claim 17 There is a random sequence r ∈ {0, 1}p(n) such that for every x ∈ {0, 1}n A(x, r)
is correct.

9

Proof: Informally, we can see that, for each input x of length n, the number of random
sequences r that give the wrong answer is exponentially small. Therefore, even if we assume
that these sequences are different for every input x, their sum is still less than the total
number of random sequences. Formally, let’s consider the probability over all sequences
that the algorithm gives the right answer for all input. If this probability is greater than 0,
then the claim is proved.

P
r
[for every x,A(x, r) is correct] = 1− P

r
[∃x,A(x, r) is wrong]

the second probability is the union of 2n possible events for each x. This is bounded by the
sum of the probabilities.

≥ 1−
∑

x∈{0,1}n
P
r
[A(x, r)is wrong]

≥ 1− 2n · 2−(n+1)

≥ 1

2

2

So, we proved that at least half of the random sequences are correct for all possible
input x. Therefore, it is straightforward to see that we can simulate the algorithm A(·, ·),
where the first input has length n and the second p(n), by a circuit of size polynomial in n.

All we have to do is find a random sequence which is always correct and build it inside
the circuit. Hence, our circuit will take as input only the input x and simulate A with input
x and r for this fixed r. Of course, this is only an existential proof, since we don’t know
how to find this sequence efficiently. 2

10

