
Stanford University — CS254: Computational Complexity Notes 3
Luca Trevisan January 14, 2014

Notes for Lecture 3

In this lecture we introduce the computational model of boolean circuits and prove that
polynomial size circuits can simulate all polynomial time computations, and we show how
to use this result to prove that 3SAT is NP-complete.

1 Circuits

A circuit C has n inputs, m outputs, and is constructed with AND gates, OR gates and
NOT gates. Each gate has in-degree 2 except the NOT gate which has in-degree 1. The
out-degree can be any number. A circuit must have no cycle. See Figure 1.

A circuit C with n inputs and m outputs computes a function fC : {0, 1}n → {0, 1}m.
See Figure 2 for an example.

AND

AND

 OR

x1 x2 x3 x4 nx

1z 2z zm

NOT

. . .

. . .

Figure 1: A Boolean circuit.

Define SIZE(C) = # of AND and OR gates of C. By convention, we do not count the
NOT gates.

To be compatible with other complexity classes, we need to extend the model to arbitrary
input sizes:

Definition 1 A language L is solved by a family of circuits {C1, C2, . . . , Cn, . . .} if for every
n ≥ 1 and for every x s.t. |x| = n,

1

NOT

AND

 OR

AND

NOT

x1 x2

circuits
XOR

x3 x4

Figure 2: A circuit computing the boolean function fC(x1x2x3x4) = x1 ⊕ x2 ⊕ x3 ⊕ x4.

x ∈ L ⇐⇒ fCn(x) = 1.

Definition 2 Say L ∈ SIZE(s(n)) if L is decided by a family {C1, C2, . . . , Cn, . . .} of
circuits, where Ci has at most s(i) gates.

2 Relation to other complexity classes

Unlike other complexity measures, like time and space, for which there are languages of
arbitrarily high complexity, the size complexity of a problem is always at most exponential.

Theorem 3 For every language L, L ∈ SIZE(O(2n)).

Proof: We need to show that for every 1-output function f : {0, 1}n → {0, 1}, f has
circuit size O(2n).

Use the identity f(x1x2 . . . xn) = (x1∧f(1x2 . . . xn))∨ (x1∧f(0x2 . . . xn)) to recursively
construct a circuit for f , as shown in Figure 3.

The recurrence relation for the size of the circuit is: s(n) = 3 + 2s(n− 1) with base case
s(1) = 1, which solves to s(n) = 2 · 2n − 3 = O(2n). 2

The exponential bound is nearly tight.

Theorem 4 There are languages L such that L 6∈ SIZE(o(2n/n)). In particular, for every
n ≥ 11, there exists f : {0, 1}n → {0, 1} that cannot be computed by a circuit of size 2n/4n.

2

Figure 3: A circuit computing any function f(x1x2 . . . xn) of n variables assuming circuits
for two functions of n− 1 variables.

Proof: This is a counting argument. There are 22
n

functions f : {0, 1}n → {0, 1}, and we
claim that the number of circuits of size s is at most 2O(s log s), assuming s ≥ n. To bound the
number of circuits of size s we create a compact binary encoding of such circuits. Identify
gates with numbers 1, . . . , s. For each gate, specify where the two inputs are coming from,
whether they are complemented, and the type of gate. The total number of bits required
to represent the circuit is

s× (2 log(n + s) + 3) ≤ s · (2 log 2s + 3) = s · (2 log 2s + 5).

So the number of circuits of size s is at most 22s log s+5s, and this is not sufficient to
compute all possible functions if

22s log s+5s < 22
n
.

This is satisfied if s ≤ 2n

4n and n ≥ 11. 2

The following result shows that efficient computations can be simulated by small circuits.

Theorem 5 If L ∈ DTIME(t(n)), then L ∈ SIZE(O(t2(n))).

Proof: Let L be a decision problem solved by a machine M in time t(n). Fix n and x s.t.
|x| = n, and consider the t(n)× t(n) tableau of the computation of M(x). See Figure 4.

Assume that each entry (a, q) of the tableau is encoded using k bits. By Proposition
3, the transition function {0, 1}3k → {0, 1}k used by the machine can be implemented by
a “next state circuit” of size k · O(23k), which is exponential in k but constant in n. This
building block can be used to create a circuit of size O(t2(n)) that computes the complete
tableau, thus also computes the answer to the decision problem.This is shown in Figure 5.

3

x1q0 x2 xn

.

.

. .
.
.

q

xx3 4

. . .

a b c d etime

tape position

Figure 4: t(n)×t(n) tableau of computation. The left entry of each cell is the tape symbol at
that position and time. The right entry is the machine state or a blank symbol, depending
on the position of the machine head.

Figure 5: Circuit to simulate a Turing machine computation by constructing the tableau.

4

2

Corollary 6 P ⊆ SIZE(nO(1)).

On the other hand, it’s easy to show that P 6= SIZE(nO(1)), and, in fact, one can define
languages in SIZE(O(1)) that are undecidable.

An equivalent characterization of languages decidable by polynomial size circuits can be
given using the notion of advice.

Definition 7 A language L can be decided in time t(n) and advice a(n) if there is an
algorithm A(·, ·) runnint in time ≤ t(n) on inputs of length n, such that for every input
length n there exists an “advice” string sn of length ≤ a(n) such that for every x of length
n

x ∈ L⇔ A(x, sn) accepts .

We denote by P/poly the class of languages that can be decided in polynomial time using
advice of polynomial length.

Theorem 8 P/poly = SIZE(nO(1)).

Proof: Suppose that L ∈ SIZE(nO(1)) and consider the circuit evaluation algorithm A
that on input a string x and a circuit C outputs C(x). Clearly A is a polynomial time
algorithm, and it witnesses L ∈ P/poly, by using a minimal-size circuit for L ∩ {0, 1}n as
the advice string for inputs of length n.

Suppose that L ∈ P/poly, and let A be the advice algorithm. Then, for every input
length n, we can construct a circuit C of size nO(1) such that, for the appropriate advice
string sn, we have C(x, sn) = 1 iff x ∈ L. Hard-wire the string sn into the circuit. 2

3 Circuit SAT and 3SAT

In the Circuit-SAT problem, we are given a boolean circuit C and we want to determine if
there exists an input x such that C(x) = 1. This is clearly a problem in NP, and now we
are going to argue that it is NP-complete.

Let L be a problem in NP, R be an NP relation showing that L ∈ NP. That is, there
is a deterministic machine M such that M determines whether a given pair (x, y) belong
to R in time at most p(|x| + |y|), where p() is a polynomial, and (x, y) ∈ R implies that
|y| ≤ q(|x|), where q() is also a polynomial. Furthermore, x ∈ L if and only if there is a y
such that (x, y) ∈ R.

Here is the reduction from L to Circuit-SAT: given an input x of length L, we construct
the circuit C of size O((p(n + q(n)))2) that given a string z of length n and a string y of
length at most q(n) determines whether M accepts the pair (z, y). Then we construct the
circuit Cx such that Cx(y) = C(x, y) by hard-wiring x into the first n bits of C. The circuit
Cx is the output of the reduction, and clearly x is in L if and only Cx is satisfiable.

3SAT is the problem in which the input is a boolean formula in 3CNF (3-conjunctive-
normal-form). A 3CNF formula is an AND-of-ORs boolean formula in which each OR

5

involves at most three variables; each variable may or may not be complemented. For
example, the following is a 3CNF:

(x1 ∨ x2 ∨ ¬x4) ∧ (x1 ∨ ¬x2) ∧ (x1 ∨ ¬x3 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ ¬x4)

A boolean formula is satisfiable if there is an assignment of boolean values to the variables
that makes the formula true. The above boolean formula is true, as witnessed, for example,
by the assignment that sets x1 to true and all other variables to false. In the 3SAT problem,
given a 3CNF formula we want to know if it is satisfiable.

To see that circuit-SAT reduces to 3SAT, given a circuit C with s gates and inputs
x1, . . . , xn, define new variables y1, . . . , ys, one new variable for each gate of C, and number
them so that ys corresponds to the output gate. Now, for every gate, write down the 3CNF
formula that states that variable corresponding to the gate has values consistent to the
values of the variables corresponding to the input. For example, if gate 9 is an AND gate
that takes inputs from x5 and from the seventh gate, we write the 3CNF corresponding to
the y9 = x5 ∧ y7, which is

(y9 ∨ ¬x5 ∨ ¬y7) ∧ (¬y9 ∨ x5 ∨ y7) ∧ (¬y9 ∨ ¬x5 ∨ y7) ∧ (¬y9 ∨ x5 ∨ ¬y7)

We take the AND of all these expression, and of the term (ys). It is easy to see that the
resulting 3CNF can be satisfied if and only if there is an x such that C(x) = 1.

6

	Circuits
	Relation to other complexity classes
	Circuit SAT and 3SAT

