
Stanford University — CS254: Computational Complexity Notes 2
Luca Trevisan January 9, 2014

Notes for Lecture 2

In this lecture we define NP, we state the P versus NP problem, we prove that its
formulation for search problems is equivalent to its formulation for decision problems, and
we prove the time hierarchy theorem, which remains essentially the only known theorem
which allows to show that certain problems are not in P.

1 Computational Problems

In a computational problem, we are given an input that, without loss of generality, we assume
to be encoded over the alphabet {0, 1}, and we want to return as output a solution satisfying
some property: a computational problem is then described by the property that the output
has to satisfy given the input.

In this course we will deal with four types of computational problems: decision problems,
search problems, optimization problems, and counting problems.1 For the moment, we will
discuss decision and search problem.

In a decision problem, given an input x ∈ {0, 1}∗, we are required to give a YES/NO
answer. That is, in a decision problem we are only asked to verify whether the input
satisfies a certain property. An example of decision problem is the 3-coloring problem:
given an undirected graph, determine whether there is a way to assign a “color” chosen
from {1, 2, 3} to each vertex in such a way that no two adjacent vertices have the same
color.

A convenient way to specify a decision problem is to give the set L ⊆ {0, 1}∗ of inputs
for which the answer is YES. A subset of {0, 1}∗ is also called a language, so, with the
previous convention, every decision problem can be specified using a language (and every
language specifies a decision problem). For example, if we call 3COL the subset of {0, 1}∗
containing (descriptions of) 3-colorable graphs, then 3COL is the language that specifies
the 3-coloring problem. From now on, we will talk about decision problems and languages
interchangeably.

In a search problem, given an input x ∈ {0, 1}∗ we want to compute some answer
y ∈ {0, 1}∗ that is in some relation to x, if such a y exists. Thus, a search problem
is specified by a relation R ⊆ {0, 1}∗ × {0, 1}∗, where (x, y) ∈ R if and only if y is an
admissible answer given x.

Consider for example the search version of the 3-coloring problem: here given an undi-
rected graph G = (V,E) we want to find, if it exists, a coloring c : V → {1, 2, 3} of the
vertices, such that for every (u, v) ∈ V we have c(u) 6= c(v). This is different (and more de-
manding) than the decision version, because beyond being asked to determine whether such
a c exists, we are also asked to construct it, if it exists. Formally, the 3-coloring problem is
specified by the relation R3COL that contains all the pairs (G, c) where G is a 3-colorable
graph and c is a valid 3-coloring of G.

1This distinction is useful and natural, but it is also arbitrary: in fact every problem can be seen as a
search problem

1

2 P and NP

In most of this course, we will study the asymptotic complexity of problems. Instead of
considering, say, the time required to solve 3-coloring on graphs with 10, 000 nodes on some
particular model of computation, we will ask what is the best asymptotic running time of
an algorithm that solves 3-coloring on all instances. In fact, we will be much less ambitious,
and we will just ask whether there is a “feasible” asymptotic algorithm for 3-coloring. Here
feasible refers more to the rate of growth than to the running time of specific instances of
reasonable size.

A standard convention is to call an algorithm “feasible” if it runs in polynomial time,
i.e. if there is some polynomial p such that the algorithm runs in time at most p(n) on
inputs of length n.

We denote by P the class of decision problems that are solvable in polynomial time.
We say that a search problem defined by a relation R is a NP search problem if the

relation is efficiently computable and such that solutions, if they exist, are short. Formally,
R is an NP search problem if there is a polynomial time algorithm that, given x and y,
decides whether (x, y) ∈ R, and if there is a polynomial p such that if (x, y) ∈ R then
|y| ≤ p(|x|).

We say that a decision problem L is an NP decision problem if there is some NP relation
R such that x ∈ L if and only if there is a y such that (x, y) ∈ R. Equivalently, a decision
problem L is an NP decision problem if there is a polynomial time algorithm V (·, ·) and
a polynomial p such that x ∈ L if and only if there is a y, |y| ≤ p(|x|) such that V (x, y)
accepts.

We denote by NP the class of NP decision problems. The class NP has the following
alternative characterization, from which it takes its name. (NP stands for Nondeterministic
Polynomial time.)

Theorem 1 NP is the set of decision problems that are solvable in polynomial time by a
non-deterministic Turing machine.

Proof: Suppose that L is solvable in polynomial time by a non-deterministic Turing ma-
chine M : then we can define the relation R such that (x, t) ∈ R if and only if t is a transcript
of an accepting computation of M on input x (that is, the sequence of configurations of an
accepting branch of M on input x) and it’s easy to prove that R is an NP relation and
that L is in NP according to our first definition. Suppose that L is in NP according to
our first definition and that R is the corresponding NP relation. Then, on input x, a non-
deterministic Turing machine can guess a string y of length less than p(|x|) and then accept
if and only if (x, y) ∈ R. Such a machine can be implemented to run in non-deterministic
polynomial time and it decides L. 2

The reason why NP, as a complexity class, is defined as a class of decision problems
rather than search problems is that one can develop a cleaner theory for decision problems
(the definition of reduction, for example, is simpler), and the complexity of decision problems
in NP completely characterizes the complexity of search problems.

Theorem 2 For every NP search problem there is an NP decision problem such that if
the decision problem is solvable in time t(n) then the search problem is solvable in time

2

O(nO(1) · t(nO(1))). In particular, P = NP if and only if every NP search problem is
solvable in polynomial time.

Proof: Let R be an NP relation defining an NP search problem. Then consider the
following decision problem:

• Input: a pair of strings x,w

• Goal: determine if there is a string z such that (x,w ◦ z) ∈ R, where ◦ denotes string
concatenation.

Suppose the above decision problem is solvable in time ≤ t(n) by an algorithm A. Then
consider the following algorithm for the search problem (ε denotes the empty string):

• Input x

• if A(x, ε) == FALSE, then return “no solution”

• w := ε

• while (x,w) 6∈ R

– if A(x,w ◦ 0) == TRUE then w := w ◦ 0

– else w := w ◦ 1

• return w

If there is no solution for x, then the algorithm discovers that at the beginning. Otherwise,
every iteration of the while loop increases the length of w while maintaining the invariant
that w is a prefix of a valid solution to x. Since R is an NP relation, such a solution must
be of length polynomial in the length of x, and so the loop terminates after a polynomial
number of iterations, with a valid solution. 2

For a function t : N → N, we define by DTIME(t(n)) the set of decision problems
that are solvable by a deterministic Turing machine within time t(n) on inputs of length n,
and by NTIME(t(n)) the set of decision problems that are solvable by a non-deterministic
Turing machine within time t(n) on inputs of length n. Hence, P =

⋃
k DTIME(O(nk))

and NP =
⋃

k NTIME(O(nk)).

3 Diagonalization

Diagonalization is essentially the only way we know of proving separations between com-
plexity classes. The basic principle is the same as in Cantor’s proof that the set of real
numbers is not countable. First note that if the set of real numbers r in the range [0, 1)
is countable then the set of infinite binary sequences is countable: we can identify a real
number r in [0, 1) with its binary expansion r =

∑∞
j=1 2−jr[j]. If we had an enumeration of

real numbers, then we would also have an enumeration of infinite binary string. (The only

3

thing to watch for is that some real numbers may have two possible binary representations,
like 0.01000 · · · and 0.001111 · · · .)

So, suppose towards a contradiction that the set of infinite binary sequences were count-
able, and let Bi[j] be the j-th bit of the i-th infinite binary sequence. Then define the
sequence B whose j-th bits is 1 − Bj [j]. This is a well-defined sequence but there can be
no i such that B = Bi, because B differs from Bi in the i-th bit.

Similarly, we can prove that the Halting problem is undecidable by considering the
following decision problem D: on input 〈M〉, the description of a Turing machine, answer
NO if M(〈M〉) halts and accepts and YES otherwise. The above problem is decidable if the
Halting problem is decidable. However, suppose D where decidable and let T be a Turing
machine that solves D, then T (〈T 〉) halts and accepts if and only if T (〈T 〉) does not halt
and accept, which is a contradiction.

It is easy to do something similar with time-bounded computations.

Definition 3 (Time constructible functions) A function f : N→ N is time constructible
if there is an algorithm that, on input n, computes the value t(n) in time O(t(n))

All polynomials p(n) are time constructible, as well as all combinations of exponential,

polynomial, and root functions such as 2
√
n, 2n, 22

n3−1
, and so on. Indeed, one needs to

work quite hard to come with an example of a function that is not time constructible. One
example of a function that is not time constructible is the following: define t(n) to equal
n2 if the number n written in binary encodes a turing machine that halts on all inputs, and
define t(n) to equal n2 + 1 otherwise.

Theorem 4 (Time hierarchy theorem – simplified version) For every time-constructible
function t(·), there is a language L such that every algorithm that decides L must run in
time > t(n) on infinitely many inputs, but L ∈ DTIME(tO(1)(n)).

Proof: The theorem holds for any model of computation which is simulable within the
model. For concreteness, we give the proof for the case of Turing machine. We define the
language

L := {(M,x) : M((M,x)) halts and rejects in ≤ t(|(M,x)|) steps }

That is, an input to the problem is a pair (M,x), where M is a Turing machine and x is a
possible input for x, and the goal of the problem is to determine whether M , on input x,
halts and rejects in at most t(n) steps, where n is the length of (M,x).

First, we note that L is decidable in time polynomial in t(n) on inputs of length n.
Given an input (M,x), we compute t(n), where n is the length of (M,x) in time O(t(n))
(here we are using the time-constructibility of t(·)) and then we run a simulation of the
computation of M on input x. If the simulation halts and reject within t(n) steps, then we
accept. If the simulation accepts within t(n) steps, or is still running after t(n) + 1 steps,
then we reject.

It remains to argue that every machine that decides L must run in time > t(n) for
infinitely many inputs.

4

Let M∗ be a machine that decides L and let x be any string. Suppose that M∗, on
input (M∗, x), halts after ≤ t(|(M∗, x)|) steps. Then if M∗, on input (M∗, x), rejects, then
(M∗, x) ∈ L, by definition of L, and so M∗ is incorrectly deciding L on input (M∗, x). If
M∗, on input (M∗, x) accepts, then (M∗, x) 6∈ L, and so M∗ is again incorrect. In either
case we reach a contradiction to the assumption that M∗ decides L.

It follows that M∗ halts after > t(|M∗, x|) steps on all the inputs of the form (M∗, x),
of which there are infinitely many. 2

We define two more complexity classes in order to derive certain simple consequences of
the time hierarchy theorem.

E := DTIME(2O(n))

EXP :=
⋃
k

DTIME(2O(nk))

Corollary 5 P 6= E and E 6= EXP

Proof: Apply the time hierarchy theorem to t(n) = 2n, and let L be the resulting language.
Then L is decidable in time 2O(n), and so it is in E. Suppose that L ∈ P, and so that there
is a machine that decides L in time at most p(n) on inputs of length n, where p(·) is
a polynomial. Since p(n) ≤ 2n for all but finitely many values of n, contradicting the
property of L guaranteed by the time hierarchy theorem.

Apply the time hierarchy theorem to t(n) = 2n
2
, and let L′ be the resulting language.

Then L′ is decidable in time 2O(n2), and so L′ ∈ EXP, but we cannot have L ∈ E or else
the machine deciding L′ in time 2O(n) would run in time ≤ 2n

2
for all but a finite number

of inputs. 2

Besides separating complexity classes, we can also use the hierarchy theorem to prove
lower bounds for specific problems. Consider the “time-bounded acceptance” problem BA
defined as

BA := {(M,x, t) : M accepts x within t time steps}

Then we see that BA is solvable in time 2O(n) given an input of length n. (The simulation
can be performed in time polynomial in the length of M , in the length of x, and in the
value of t. If n is the overall input length, then the length of M and x are at most n, and
the value of t is at most 2n.)

Now, suppose that there was an algorithm for BA running in time 2o(n): we show that
this implies that every problem in E can also be solved in 2o(n time. Indeed, let L be a
problem in E, and let M be a machine that solves L in time ≤ 2cn for a constant c on
inputs of length n. Then, given an input x for L of length n, we can prepare the input
(M,x, 2cn) for BA, and we see that x ∈ L if and only if (M,x, 2cn) ∈ BA. Since (M,x, 2cn)
is an input of BA length n′ = O(1) +n+ cn, it can be decided in time 2o(n

′), which is 2o(n).
Now, deciding all problems in E in time 2o(n) is a violation of the time hierarchy theorem,
and so the assumption that there is a 2o(n)-time algorithm for BA must be false.

5

4 Other complexity classes

For an integer function s(n), we define SPACE(s(n)) to be the class of decision problems
that are solvable by a deterministic Turing machine that uses space at most s(n)) on inputs
of length n. We always have SPACE(s(n)) ⊆ DTIME(2O(s(n))) because a Turing with a
tape alphabet of size c and q states can run for at most q · s(n) · cs(n) before repeating the
same configuration twice, which is never possible for a halting computation.

We define PSPACE := SPACE(nO(1)) and EXPSPACE := SPACE(2n
O(1)

); note
that PSPACE ⊆ EXP.

6

	Computational Problems
	P and NP
	Diagonalization
	Other complexity classes

