Stanford University — CS254: Computational Complexity Handout 8
Luca Trevisan 4/21/2010

Counting Problems

Today we describe counting problems and the class #P that they define, and we
show that every counting problem #P can be approximately solved in randomized
polynomial given access to an NP oracle.

1 Counting Classes

[Note: we did not cover most of the material of this section in class.]

Recall that R is an NP-relation, if there is a polynomial time algorithm A such that
(x,y) € R < A(z,y) = 1 and there is a polynomial p such that (z,y) € R = |y| <
p(lzl).

Definition 1 If R is an NP relation, then #R is the problem that, given x, asks
how many y satisfy (x,y) € R.

#P is the class of all problems of the form #R, where R is an NP-relation.

Observe that an NP-relation R naturally defines an NP language Ly, where Lr =
{z : Jy.(z,y) € R}, and every NP language can be defined in this way. There-
fore problems in #P can always be seen as the problem of counting the number of
witnesses for a given instance of an NP problem.

Unlike for decision problems there is no canonical way to define reductions for counting
classes. There are two common definitions.

Definition 2 We say there is a parsimonious reduction from #A to #B (written
#A <,u #B) if there is a polynomial time transformation f such that for all x,

{y, (z,y) € A} = [{z: (f(2),2) € B}.

Often this definition is a little too restrictive and we use the following definition
instead.

Definition 3 #A < #B if there is a polynomial time algorithm for #A given an
oracle that solves #B.

#CIRCUITSAT is the problem where given a circuit, we want to count the number
of inputs that make the circuit output 1.

Theorem 4 #CIRCUITSAT is #P-complete under parsimonious reductions.

PRrROOF: Let #R be in #P and A and p be as in the definition. Given x we want to
construct a circuit C' such that [{z : C(2)}| = {y : ly| < p(|z]), A(z,y) = 1}|. We
then construct C), that on input x,y simulates A(z,y). From earlier arguments we
know that this can be done with a circuit with size about the square of the running
time of A. Thus C, will have size polynomial in the running time of A and so

A

polynomial in z. Then let C(y) = C(z,y). O

Theorem 5 #3SAT is #P-complete.

PrOOF: We show that there is a parsimonious reduction from #CIRCUITSAT to
#3-SAT. That is, given a circuit C' we construct a Boolean formula ¢ such that the
number of satisfying assignments for ¢ is equal to the number of inputs for which C'
outputs 1. Suppose C has inputs xi,...,x, and gates 1,...,m and ¢ has inputs
X1,y Tn, g1, -, 9m, Where the g; represent the output of gate i. Now each gate has
two input variables and one output variable. Thus a gate can be complete described
by mimicking the output for each of the 4 possible inputs. Thus each gate can be
simulated using at most 4 clauses. In this way we have reduced C' to a formula ¢
with n + m variables and 4m clauses. So there is a parsimonious reduction from

#CIRCUITSAT to #3SAT. OJ

Notice that if a counting problem # R is #P-complete under parsimonious reductions,
then the associated language Ly is NP-complete, because #3SAT <, #R implies
3SAT < Lgi. On the other hand, with the less restrictive definition of reducibility,
even some counting problems whose decision version is in P are #P-complete. For
example, the problem of counting the number of satisfying assignments for a given
2CNF formula and the problem of counting the number of perfect matchings in a
given bipartite graphs are both #P-complete.

2 Complexity of counting problems

We will prove the following theorem:

Theorem 6 For every counting problem # A in #P, there is a probabilistic algorithm
C' that on input x, computes with high probability a value v such that

(1 —e)#A(x) <v < (14 e)#A(x)

in time polynomial in |x| and in %, using an oracle for NP.

2

The theorem says that #P can be approximate in BPPNY. We remark that ap-
proximating #35AT is NP-hard, and so to compute an approximation we need at
least the power of NP. Theorem 6 states that the power of NP and randomization
is sufficient.

Another remark concerns the following result.
Theorem 7 (Toda) For every k, ¥ C P#P.

This implies that #3SAT is ¥i-hard for every k, i.e., #3SAT lies outside the poly-
nomial hierarchy, unless the hierarchy collapses. Recall that BPP lies inside 35, and
hence approximating #35AT can be done in ¥3. Therefore, approximating #3SAT
cannot be equivalent to computing #35AT exactly, unless the polynomial hierarchy
collapses.!

We first make some observations so that we can reduce the proof to the task of proving
a simpler statement.

e [t is enough to prove the theorem for #3S5AT.
If we have an approximation algorithm for #3SAT, we can extend it to any
#A in #P using the parsimonious reduction from #A to #3SAT.

e It is enough to give a polynomial time O(1)-approximation for #3SAT.

Suppose we have an algorithm C' and a constant ¢ such that
1
~#35AT () < Clp) < c#3SAT (p).
c

Given ¢, we can construct ¥ = ¢ A @y A -+ A @, where each ¢; is a copy of
¢ constructed using fresh variables. If ¢ has ¢ satisfying assignments, ¢* has t*
satisfying assignments. Then, giving ¢* to the algorithm we get

1
—tF < C(p*) < ctf
C

11/k
&

If ¢ is a constant and k = O(1), ¢//F =1 +e.

IThe above discussion was not very rigorous but it can be correctly formalized. In particular:
(i) from the fact that BPP C ¥, and that approximate counting is doable in BPPN? it does not
necessarily follow that approximate counting is in X3, although in this case it does because the proof
that BPP C Y, relativizes; (ii) we have defined BPP, o3, etc., as classes of decision problems,
while approximate counting is not a decision problem (it can be shown, however, to be equivalent
to a “promise problem,” and the inclusion BPP C 35 holds also for promise problems.

e For a formula ¢ that has O(1) satisfying assignments, #3SAT () can be found
in PNP.
This can be done by iteratively asking the oracle the questions of the form:

“Are there k assignments satisfying this formula?” Notice that these are NP
questions, because the algorithm can guess these k£ assignments and check them.

3 An approximate comparison procedure

Suppose that we had available an approximate comparison procedure a-comp with
the following properties:

o If #3SAT(p) > 28! then a — comp(ip, k) = YES with high probability;

o If #3SAT(p) < 2* then a — comp(p, k) = NO with high probability.

Given a-comp, we can construct an algorithm that 2-approximates #35AT as de-
scribed below:
e Input: ¢
e compute:
— a~comp(y,0)

— a~comp(, 1)
— a~comp(¢, 2)

— a-comp(p,n + 1)
e if a-comp outputs NO from the first time then

— // The value is either 0 or 1 and the answer can be checked by one more
query to the NP oracle.

— Query to the oracle and output an exact value.
e clse

— Suppose that it outputs YES for t =1,...,i — 1 and NO for t =1
— Output 2°

We need to show that this algorithm approximates #3SAT within a factor of 2.
If a-comp answers NO from the first time, the algorithm outputs the right answer
because it checks for the answer explicitly. Now suppose a-comp says YES for all
t = 1,2,...,i — 1 and says NO for ¢ = 4. Since a-comp(p,i — 1) outputs YES,
#3SAT(p) > 271 and also since a-comp(ip,2) outputs NO, #3SAT () < 27+1.
The algorithm outputs a = 2°. Hence,

1
¢ <#3SAT(p) <2-a

and the algorithm outputs the correct answer with in a factor of 2.

PNP

Thus, to establish the theorem, it is enough to give a BP implementation of the

a-comp.

4 Constructing a-comp

The procedure and its analysis is similar to the Valiant-Vazirani reduction: for a given
formula ¢ we pick a hash function A from a pairwise independent family, and look at
the number of assignments z that satisfy h and such that h(z) = 0.

In the Valiant-Vazirani reduction, we proved that if S is a set of size approximately
equal to the size of the range of h(), then, with constant probability, exactly one
element of S is mapped by h() into 0. Now we use a different result, a simplified
version of the “Leftover Hash Lemma” proved by Impagliazzo, Levin, and Luby in
1989, that says that if S is sufficiently larger than the range of h() then the number
of elements of S mapped into 0 is concentrated around its expectation.

Lemma 8 Let H be a family of pairwise independent hash functions h {0,1}" —
{0,1}™. Let S € {0,1}", |S| > *2~. Then,

€

151

Hl{ae S ha) =0} - o7

> e@} <3 (1)

hEDH - 2m

From this, a-comp can be constructed as follows.
e input: ¢, k
e if k <5 then check exactly whether #3SAT () > 2.
e ifk>6

— pick h from a set of pairwise independent hash functions h : {0,1}" —
{0,1}™, where m =k —5

— answer YES iff there are more then 48 assignments a to ¢ such that a
satisfies ¢ and h(a) = 0.

Notice that the test at the last step can be done with one access to an oracle to
NP. We will show that the algorithm is in BPPN?. Let S C {0,1}" be the set of
satisfying assignments for ¢. There are 2 cases.

o If |S| > 2¥! by Lemma 8 we have:

Bl taes:ha) _0}|' . @]zz

P S
heH || 2™ =4 9om

(set e = 1, and | S| > *3~ =64 - 2™, because |S| > 2FF! = 2m+6)

p [leesinw-o=3- 2 2,
P [[{a €S ha) =0} 2 48] 2 3,

which is the success probability of the algorithm.

o If |S| < 28
Let S’ be a superset of S of size 2. We have

P [answer YES] = hIGPHH{a € S:h(s) =0} > 4§

heH

< P {ac s :his) =0} 2 4

ShIEP’H HHGGS/ h(s) =0} — Qm

1
< Z
!

(by Lemma 8 with e = 1/2,]5| = 32-2™.)

> 4

]

Therefore, the algorithm will give the correct answer with probability at least 3/4,
which can then be amplified to, say, 1 — 1/4n (so that all n invocations of a-comp
are likely to be correct) by repeating the procedure O(logn) times and taking the
majority answer.

5 The proof of Lemma 8

We finish the lecture by proving Lemma 8.

Proor: We will use Chebyshev’s Inequality to bound the failure probability. Let
S ={a,...,a}, and pick a random h € H. We define random variables X1, ..., X}

as
0 otherwise.
Clearly, [{a € S : h(a) =0} = >, X;.

We now calculate the expectations. For each i, P[X; = 1] = 5% and E[X;] = 5=.
Hence,

in] - (2

E

Also we calculate the variance

Var[X,] = E[X?] — E[X,]?

< E[X7]
1
=EX;| = —.
E[X] = 5
Because X, ..., X} are pairwise independent,

5]
Var [EZ] EZ Var[X;] < o (3)
Using Chebyshev’s Inequality, we get

3 >6@]:P[

= om

|51

{aeS:hla) =0} - =

6 Approximate Sampling

The content of this section was not covered in class; it’s here as bonus material. It’s
good stuff.

So far we have considered the following question: for an NP-relation R, given an
input x, what is the size of the set R, = {y : (z,y) € R}7 A related question is to be
able to sample from the uniform distribution over R,.

Whenever the relation R is “downward self reducible” (a technical condition that we
won’t define formally), it is possible to prove that there is a probabilistic algorithm
running in time polynomial in |z| and 1/€ to approximate within 1+ € the value |R, |
if and only if there is a probabilistic algorithm running in time polynomial in |z| and
1/e that samples a distribution e-close to the uniform distribution over R,.

We show how the above result applies to 3SAT (the general result uses the same proof
idea). For a formula ¢, a variable x and a bit b, let us define by ¢, the formula
obtained by substituting the value b in place of .2

If ¢ is defined over variables x1,...,x,, it is easy to see that
#¢ = #¢x<—0 + #¢I<—1

Also, if S is the uniform distribution over satisfying assignments for ¢, we note that

#Qb:v%b
— b=
(zl,‘..En)Hs[xl] #o

Suppose then that we have an efficient sampling algorithm that given ¢ and e generates
a distribution e-close to uniform over the satisfying assignments of ¢.

Let us then ran the sampling algorithm with approximation parameter ¢/2n and
use it to sample about O(n?/e?) assignments. By computing the fraction of such
assignments having 1 = 0 and z; = 1, we get approximate values pg, p1, such that
Db — Pay,....en)—s[x1 = b]| < €/n. Let b be such that p, > 1/2, then #¢,.p/pp is a
good approximation, to within a multiplicative factor (1 + 2¢/n) to #¢, and we can
recurse to compute #¢,.; to within a (1 + 2¢/n)""! factor.

Conversely, suppose we have an approximate counting procedure. Then we can ap-

proximately compute p, = £2z=t generate a value b for z; with probability approxi-

#
mately py, and then recurse to generate a random assignment for #¢,. .

The same equivalence holds, clearly, for 2SAT and, among other problems, for the
problem of counting the number of perfect matchings in a bipartite graph. It is known
that it is NP-hard to perform approximate counting for 2SAT and this result, with
the above reduction, implies that approximate sampling is also hard for 2SAT. The
problem of approximately sampling a perfect matching has a probabilistic polynomial
solution, and the reduction implies that approximately counting the number of perfect
matchings in a graph can also be done in probabilistic polynomial time.

2Specifically, ¢, is obtained by removing each occurrence of —x from the clauses where it
occurs, and removing all the clauses that contain an occurrence of x; the formula ¢,. ¢ is similarly
obtained.

The reduction and the results from last section also imply that 3SAT (and any other
NP relation) has an approximate sampling algorithm that runs in probabilistic poly-
nomial time with an NP oracle. With a careful use of the techniques from last week
it is indeed possible to get an ezact sampling algorithm for 3SAT (and any other
NP relation) running in probabilistic polynomial time with an NP oracle. This is
essentially best possible, because the approximate sampling requires randomness by
its very definition, and generating satisfying assignments for a 3SAT formula requires
at least an NP oracle.

	Counting Classes
	Complexity of counting problems
	An approximate comparison procedure
	Constructing a-comp
	The proof of Lemma 8
	Approximate Sampling

