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Today we prove the Valiant-Vazirani theorem.

Theorem 1 (Valiant-Vazirani) Suppose there is a polynomial time algorithm that
on input a CNF formula having exactly one satisfying assignment finds that assign-
ment. (We make no assumption on the behaviour of the algorithm on other inputs.)
Then NP = RP.

1 The Valiant-Vazirani Theorem

As discussed in the last lecture, our approach is the following: given a satisfiable
formula φ and a number k such that φ has roughly 2k satisfying assignments, we pick
a random hash function h : {0, 1}n → {0, 1}k+2 from a family of pairwise independent
hash functions, and we construct a formula ψ(x) which is equivalent to φ(x)∧(h(x) =
0). With constant probability, ψ has precisely one satisfying assignment, and so we
can pass it to our hypothetical algorithm, which finds a satisfying assignment for ψ
and hence a satisfying assignment for φ.

If we are only given φ, we can try all possible values of k between 0 and n (where
n is the number of variables in φ), and run the above procedure for each k. When
the correct value of k is chosen, we have a constant probability of finding a satisfying
assignment for φ.

Once we have a randomized algorithm that, given a satisfiable formula, finds a sat-
isfying assignment with constant probability, we have an RP algorithm for 3SAT:
run the assignment-finding algorithm, accept if it finds a satisfying assignment and
reject otherwise. The existence of an RP algorithm for 3SAT implies that NP ⊆ RP
because RP is closed under many-to-one reductions, and so RP = NP because we
have RP ⊆ NP by definition.

The main calculation that we need to perform is to show that if we have a set of size
roughly 2k, and we hash its elements pairwise independently to {0, 1}k+2, then there
is a constant probability that exactly one element is hashed to (0, . . . , 0).

Lemma 2 Let T ⊆ {0, 1}n be a set such that 2k ≤ |T | < 2k+1 and let H be a family
of pairwise independent hash functions of the form h : {0, 1}n → {0, 1}k+2. Then if
we pick h at random from H, there is a constant probability that there is a unique
element x ∈ T such that h(x) = 0. Precisely,

P
h∈H

[|{x ∈ T : h(x) = 0}| = 1] ≥ 1
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Proof: Let us fix an element x ∈ T . We want to compute the probability that x is
the unique element of T mapped into 0 by h. Clearly,

P
h
[h(x) = 0∧∀y ∈ T−{x}.h(y) 6= 0] = P

h
[h(x) = 0]·P

h
[∀y ∈ T−{x}.h(y) 6= 0|h(x) = 0]

and we know that

P
h
[h(x) = 0] =

1

2k+2

The difficult part is to estimate the other probability. First, we write

P
h
[∀y ∈ T − {x}.h(y) 6= 0|h(x) = 0] = 1− P

h
[∃y ∈ T − {x}.h(y) = 0|h(x) = 0]

And then observe that

P
h
[∃y ∈ T − {x}.h(y) = 0|h(x) = 0]

≤
∑

y∈|T |−{x}
P
h
[h(y) = 0|h(x) = 0]

=
∑

y∈|T |−{x}
P
h
[h(y) = 0]

=
|T | − 1

2k+2

≤ 1

2

Notice how we used the fact that the value of h(y) is independent of the value of h(x)
when x 6= y.

Putting everything together, we have

P
h
[∀y ∈ T − {x}.h(y) 6= 0|h(x) = 0] ≥ 1

2

and so

P
h
[h(x) = 0 ∧ ∀y ∈ T − {x}.h(y) 6= 0] ≥ 1

2k+3

To conclude the argument, we observe that the probability that there is a unique
element of T mapped into 0 is given by the sum over x ∈ T of the probability that x
is the unique element mapped into 0 (all this events are disjoint, so the probability
of their union is the sum of the probabilities). The probability of a unique element
mapped into 0 is then at least |T |/2k+3 > 1/8. �
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Lemma 3 There is a probabilistic polynomial time algorithm that on input a CNF
formula φ and an integer k outputs a formula ψ such that

• If φ is unsatisfiable then ψ is unsatisfiable.

• If φ has at least 2k and less than 2k+1 satifying assignments, then there is a
probability at least 1/8 then the formula ψ has exactly one satisfying assignment.

Proof: Say that φ is a formula over n variables. The algorithm picks at random
vectors a1, . . . , ak+2 ∈ {0, 1}n and bits b1, . . . , bk+2 and produces a formula ψ that is
equivalent to the expression φ(x)∧(a1 ·x+b1 = 0)∧ . . .∧(ak+2 ·x+bk+2 = 0). Indeed,
there is no compact CNF expression to compute a ·x if a has a lot of ones, but we can
proceed as follows: for each i we add auxiliary variables yi

1, . . . , y
i
n and then write a

CNF condition equivalent to (yi
1 = x1∧ai[1])∧· · ·∧(yi

n = yi
n−1⊕(xn∧ai[n]⊕bi))). Then

ψ is the AND of the clauses in φ plus all the above expressions for i = 1, 2, . . . , k+ 2.

By construction, the number of satisfying assignments of ψ is equal to the number of
satisfying assignments x of φ such that ha1,...,ak+2,b1,...,bk+2

(x) = 0. If φ is unsatisfiable,
then, for every possible choice of the ai, ψ is also unsatisfiable.

If φ has between 2k and 2k+1 assignments, then Lemma 2 implies that with probability
at least 1/8 there is exactly one satisfying assignment for ψ. �

We can now prove the Valiant-Vazirani theorem.

Proof:[Of Theorem 1] It is enough to show that, under the assumption of the The-
orem, 3SAT has an RP algorithm.

On input a formula φ, we construct formulae ψ0, . . . , ψn by using the algorithm of
Lemma 3 with parameters k = 0, . . . , n. We submit all formulae ψ0, . . . , ψn to the
algorithm in the assumption of the Theorem, and accept if the algorithm can find a
satisfying assignment for at least one of the formulae. If φ is unsatisfiable, then all
the formulae are always unsatisfiable, and so the algorithm has a probability zero of
accepting. If φ is satisfiable, then for some k it has between 2k and 2k+1 satisfying
assignments, and there is a probability at least 1/8 that ψk has exactly one satisfying
assignment and that the algorithm accepts. If we repeat the above procedure t times,
and accept if at least one iteration accepts, then if φ is unsatisfiable we still have
probability zero of accepting, otherwise we have probability at least 1 − (7/8)t of
accepting, which is more than 1/2 already for t = 6. �
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