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Today we prove the Valiant-Vazirani theorem.

Theorem 1 (Valiant-Vazirani) Suppose there is a polynomial time algorithm that
on input a CNF formula having exactly one satisfying assignment finds that assign-
ment. (We make no assumption on the behaviour of the algorithm on other inputs.)

Then NP = RP.

1 The Valiant-Vazirani Theorem

As discussed in the last lecture, our approach is the following: given a satisfiable
formula ¢ and a number k such that ¢ has roughly 2* satisfying assignments, we pick
a random hash function h : {0,1}" — {0, 1}*2 from a family of pairwise independent
hash functions, and we construct a formula v (z) which is equivalent to ¢(z) A (h(z) =
0). With constant probability, ¢ has precisely one satisfying assignment, and so we
can pass it to our hypothetical algorithm, which finds a satisfying assignment for v
and hence a satisfying assignment for ¢.

If we are only given ¢, we can try all possible values of k£ between 0 and n (where
n is the number of variables in ¢), and run the above procedure for each k. When
the correct value of k is chosen, we have a constant probability of finding a satisfying
assignment for ¢.

Once we have a randomized algorithm that, given a satisfiable formula, finds a sat-
isfying assignment with constant probability, we have an RP algorithm for 3SAT:
run the assignment-finding algorithm, accept if it finds a satisfying assignment and
reject otherwise. The existence of an RP algorithm for 3SAT implies that NP C RP
because RP is closed under many-to-one reductions, and so RP = NP because we
have RP C NP by definition.

The main calculation that we need to perform is to show that if we have a set of size
roughly 2%, and we hash its elements pairwise independently to {0, 1}**2  then there
is a constant probability that exactly one element is hashed to (0, ...,0).

Lemma 2 Let T C {0,1}" be a set such that 28 < |T| < 28t and let H be a family
of pairwise independent hash functions of the form h : {0,1}" — {0, 1}**2. Then if
we pick h at random from H, there is a constant probability that there is a unique
element x € T such that h(xz) = 0. Precisely,

B ({z €T s hia) = 0} = 1) >

ool



PROOF: Let us fix an element x € T. We want to compute the probability that x is
the unique element of T" mapped into 0 by A. Clearly,

Plh(z) = 0AYy € T—{a}.h(y) # 0] = Blh(x) = O]-B¥y € T~ {x}.h(y) # OJh(x) = 0]

and we know that

1
Plh(a) = 0] = 5

The difficult part is to estimate the other probability. First, we write

PIVy € T~ {a}.(y) # Olh(x) = 0 =1~ B3y € T ~ {w}.h(y) = O|h(x) = 0]

And then observe that

PRy € T — {z}.h(y) = 0lh(z) = O]
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Notice how we used the fact that the value of h(y) is independent of the value of h(z)
when x # y.

Putting everything together, we have

PIVy € T~ {zhhly) £ Olh(r) = 0] > 3

and so .

H;[h(fﬂ) =0AVyeT —{az}.h(y) #0] > Y}
To conclude the argument, we observe that the probability that there is a unique
element of T" mapped into 0 is given by the sum over x € T of the probability that x
is the unique element mapped into 0 (all this events are disjoint, so the probability

of their union is the sum of the probabilities). The probability of a unique element
mapped into 0 is then at least |T'|/2*% > 1/8. O



Lemma 3 There is a probabilistic polynomial time algorithm that on input a CNF
formula ¢ and an integer k outputs a formula i) such that

o [f ¢ is unsatisfiable then v is unsatisfiable.

o If ¢ has at least 2 and less than 2" satifying assignments, then there is a
probability at least 1/8 then the formula 1) has exactly one satisfying assignment.

PrOOF: Say that ¢ is a formula over n variables. The algorithm picks at random
vectors ay, ..., agyo € {0,1}" and bits by, ..., bg2 and produces a formula ¢ that is
equivalent to the expression ¢p(x) A (a-x+by = 0)A...A(aks2-T+bgyo = 0). Indeed,
there is no compact CNF expression to compute a-x if a has a lot of ones, but we can
proceed as follows: for each ¢ we add auxiliary variables 4, ...,y and then write a
CNF condition equivalent to (y = z1Aa;[1])A- Ayl = ¢, _1®(x,Aa;[n]@b;))). Then
1 is the AND of the clauses in ¢ plus all the above expressions for i = 1,2, ...,k + 2.

By construction, the number of satisfying assignments of v is equal to the number of
satisfying assignments x of ¢ such that ha1,...,ak+2,b1,...,bk+z(37) = 0. If ¢ is unsatisfiable,
then, for every possible choice of the a;, ¢ is also unsatisfiable.

If ¢ has between 2F and 2¥+1 assignments, then Lemma 2 implies that with probability
at least 1/8 there is exactly one satisfying assignment for . O

We can now prove the Valiant-Vazirani theorem.

PROOF:[Of Theorem 1] It is enough to show that, under the assumption of the The-
orem, 3SAT has an RP algorithm.

On input a formula ¢, we construct formulae vy, ..., by using the algorithm of
Lemma 3 with parameters £k = 0,...,n. We submit all formulae %y, ...,%, to the
algorithm in the assumption of the Theorem, and accept if the algorithm can find a
satisfying assignment for at least one of the formulae. If ¢ is unsatisfiable, then all
the formulae are always unsatisfiable, and so the algorithm has a probability zero of
accepting. If ¢ is satisfiable, then for some k it has between 2% and 2! satisfying
assignments, and there is a probability at least 1/8 that 1, has exactly one satisfying
assignment and that the algorithm accepts. If we repeat the above procedure t times,
and accept if at least one iteration accepts, then if ¢ is unsatisfiable we still have
probability zero of accepting, otherwise we have probability at least 1 — (7/8)" of
accepting, which is more than 1/2 already for t = 6. [
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