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In this lecture we prove the Karp-Lipton theorem that if all NP problems have poly-
nomial size circuits then the polynomial hierarchy collapses. A nice application is a
theorem of Kannan, showing that, for every k, there are languages in ¥y requiring
circuits of size Q(n*). The next result we wish to prove is that all approximate com-
binatorial counting problem can be solved within the polynomial hierarchy. Before
introducing counting problems and the hashing techniques that will yield this result,
we prove the Valiant-Vazirani theorem that solving SAT on instances with exactly
one satisfying assignment is as hard as solving SAT in general.

1 The Karp-Lipton Theorem

Theorem 1 (Karp-Lipton) If NP C SIZE(n®") then ¥y = Iy and therefore the
polynomial hierarchy would collapse to its second level.

Before proving the above theorem, we first show a result that contains some of the
ideas in the proof of the Karp-Lipton theorem.

Lemma 2 If NP C SIZE(n°WM) then for every polynomial time computable F(-,-)
and every polynomial p(-), there is a family of polynomial size circuits such that

y: F(z,y) =1 if such a y exists
Cm(l‘) = {

a sequence of zeroes if otherwise

PROOF: We define the circuits C, . .. . CP™ a5 follows:

C?, on input x and bits by,...,b;_1, outputs 1 if and only if there is a satisfying
assignment for F(x,y) =1 where y3 = by,...,y;1 = bi_1,y; = 1.

Also, each circuit realizes an NP computation, and so it can be built of polyno-
mial size. Consider now the sequence by = Cl(xz), by = Ci(b1,x), ..., bywm) =
C’ﬁ(")(bl, .y bpm)—1, ), as shown in the following picture:
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The reader should be able to convince himself that this is a satisfying assignment for
F(z,y) = 1if it is satisfiable, and a sequence of zeroes otherwise. [

We now prove the Karp-Lipton theorem.

PROOF: [Of Theorem 1] We will show that if NP C SIZE(n°") then II, C 5. By
a result in a previous lecture, this implies that Vk > 2 X = X,

Let L € Il,, then there is a polynomial p(-) and a polynomial-time computable F'(-)
such that
z € L < Vyilyi| < p(|2)3yz-lya| < p(|a]).-F(z, y1,92) =1

By using Lemma 2, we can show that, for every n, there is a circuit C,, of size
polynomial in n such that for every x of length n and every vy, |y1| < p(|z|),

Fyo-ly2| < p(|z]) A F(2,y1,92) = 1 if and only if F(z,y1, Cp(z,41)) = 1
Let g(n) be a polynomial upper bound to the size of C,,.

So now we have that for inputs = of length n,

r € L« 3C.|C| < q(n).Vyi.|y1| < p(n).F(z,y1,C(z,41)) =1
which shows that L is in ¥,. [J

2 Kannan’s Theorem

Although it is open to prove that the polynomial hierarchy is not contained in P /poly,
it is not hard to prove the following result.



Theorem 3 For every polynomial p(), there is a language L € Y3 such that L ¢
SIZE(p(n)).

Note that Theorem 3 is not saying that Y3 € P /poly, because for that to be true we
would have to be able to construct a single language L such that for every polynomial
p we have L ¢ SIZE(p(n)), instead of constructing a different language for each
polynomial. (This is an important difference: the time hierarchy theorem gives us,
for every polynomial p(), a language L € P such that L ¢ DTIME(p(n)), but this
doesn’t mean that P # P.)

Kannan observed the following consequence of Theorem 3 and of the Karp-Lipton
theorem.

Theorem 4 For every polynomial p(), there is a language L € Yo such that L ¢
SIZE(p(n)).

PRrooOF: We consider two cases:

o if 35AT ¢ SIZE(p(n)); then we are done because 3SAT € NP C ¥,.

e if 3SAT € SIZE(p(n)), then NP C P /poly, so by the Karp-Lipton theorem we
have X3 = ¥, and the language L € X3 — SIZE(p(n)) given by Theorem 3 is
in 22.

3 The Valiant-Vazirani Theorem

In this section we begin to discuss the proof of the following result, due to Valiant
and Vazirani: suppose there is an algorithm for the satisfiability problem that always
find a satisfying assignment for formulae that have exactly one satisfiable assignment
(and behaves arbitrarily on other instances): then we can get an RP algorithm for
the general satisfiability problem, and so NP = RP.

We prove the result by presenting a randomized reduction that given in input a CNF
formula ¢ produces in output a polynomial number of formulae vy, ...,9¥,. If ¢ is
satisfiable, then (with high probability) at least one of the ; is satisfiable and has
exactly one satisfying assignment; if ¢ is not satisfiable, then (with probability one)
all 1; are unsatisfiable.

The idea for the reduction is the following. Suppose ¢ is a satisfiable formula with n
variables that has about 2F satisfying assignments, and let A : {0,1}" — {0,1}* be a
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hash function picked from a family of pairwise independent hash functions: then the
average number of assignments x such that ¢(z) is true and h(x) = (0,...,0) is about
one. Indeed, we can prove formally that with constant probability there is exactly
one such assignment,! and that there is CNF formula v (easily constructed from ¢
and h) that is satisfied precisely by that assignment. By doing the above construction
for values of k ranging from 0 to n, we obtain the desired reduction. Details follow.

Definition 5 Let H be a family of functions of the form h : {0,1}* — {0,1}™.
We say that H is a family of pair-wise independent hash functions if for every two
different inputs x,y € {0,1}" and for every two possible outputs a,b € {0,1}"™ we
have

P [h(z) =aAh(y) =b = —

heH 22m

Another way to look at the definition is that for every x # y, when we pick h at
random then the random variables h(x) and h(y) are independent and uniformly
distributed. In particular, for every x # y and for every a,b we have Pp[h(z) =
alh(y) = b] = Pp[h(z) = al.

For m vectors ai,...,a, € {0,1}" and m bits by,..., by, define hq, a4 by, -
{0,1}" — {0,1}™ as hap(x) = (a1-2+Db1, ..., am-T+by,) where a-z := ¥;a;2; mod 2,
and let H,pp be the family of functions defined this way. Then it is not hard to see
that Happ is a family of pairwise independent hash functions.

IFor technical reasons, it will be easier to prove that this is the case when picking a hash function
h:{0,1}" — {0,1}F+2.
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