
Stanford University — CS254: Computational Complexity Handout 6
Luca Trevisan April 14, 2010

Last revised 4/29/2010

In this lecture we prove the Karp-Lipton theorem that if all NP problems have poly-
nomial size circuits then the polynomial hierarchy collapses. A nice application is a
theorem of Kannan, showing that, for every k, there are languages in Σ2 requiring
circuits of size Ω(nk). The next result we wish to prove is that all approximate com-
binatorial counting problem can be solved within the polynomial hierarchy. Before
introducing counting problems and the hashing techniques that will yield this result,
we prove the Valiant-Vazirani theorem that solving SAT on instances with exactly
one satisfying assignment is as hard as solving SAT in general.

1 The Karp-Lipton Theorem

Theorem 1 (Karp-Lipton) If NP ⊆ SIZE(nO(1)) then Σ2 = Π2 and therefore the
polynomial hierarchy would collapse to its second level.

Before proving the above theorem, we first show a result that contains some of the
ideas in the proof of the Karp-Lipton theorem.

Lemma 2 If NP ⊆ SIZE(nO(1)) then for every polynomial time computable F (·, ·)
and every polynomial p(·), there is a family of polynomial size circuits such that

C|x|(x) =

{
y : F (x, y) = 1 if such a y exists

a sequence of zeroes if otherwise

Proof: We define the circuits C1
n, . . . , C

p(n)
n as follows:

Ci
n, on input x and bits b1, . . . , bi−1, outputs 1 if and only if there is a satisfying

assignment for F (x, y) = 1 where y1 = b1, . . . , yi−1 = bi−1, yi = 1.

Also, each circuit realizes an NP computation, and so it can be built of polyno-
mial size. Consider now the sequence b1 = C1

n(x), b2 = C2
n(b1, x), . . ., bp(n) =

C
p(n)
n (b1, . . . , bp(n)−1, x), as shown in the following picture:

1

x1 1y
there is y
starting with
1

2

x1 1y
there is y2

y2

x1 1y 1b x1 1y 2b1b

1b 2b

. . .

. . .

there is y
starting with2

b 1

there is y
starting with
b b 1

2

1 1 2

3b

0 or 1

The reader should be able to convince himself that this is a satisfying assignment for
F (x, y) = 1 if it is satisfiable, and a sequence of zeroes otherwise. �

We now prove the Karp-Lipton theorem.

Proof: [Of Theorem 1] We will show that if NP ⊆ SIZE(nO(1)) then Π2 ⊆ Σ2. By
a result in a previous lecture, this implies that ∀k ≥ 2 Σk = Σ2.

Let L ∈ Π2, then there is a polynomial p(·) and a polynomial-time computable F (·)
such that

x ∈ L↔ ∀y1.|y1| ≤ p(|x|)∃y2.|y2| ≤ p(|x|).F (x, y1, y2) = 1

By using Lemma 2, we can show that, for every n, there is a circuit Cn of size
polynomial in n such that for every x of length n and every y1, |y1| ≤ p(|x|),

∃y2.|y2| ≤ p(|x|) ∧ F (x, y1, y2) = 1 if and only if F (x, y1, Cn(x, y1)) = 1

Let q(n) be a polynomial upper bound to the size of Cn.

So now we have that for inputs x of length n,

x ∈ L↔ ∃C.|C| ≤ q(n).∀y1.|y1| ≤ p(n).F (x, y1, C(x, y1)) = 1

which shows that L is in Σ2. �

2 Kannan’s Theorem

Although it is open to prove that the polynomial hierarchy is not contained in P/poly,
it is not hard to prove the following result.

2

Theorem 3 For every polynomial p(), there is a language L ∈ Σ3 such that L 6∈
SIZE(p(n)).

Note that Theorem 3 is not saying that Σ3 6⊆ P/poly, because for that to be true we
would have to be able to construct a single language L such that for every polynomial
p we have L 6∈ SIZE(p(n)), instead of constructing a different language for each
polynomial. (This is an important difference: the time hierarchy theorem gives us,
for every polynomial p(), a language L ∈ P such that L 6∈ DTIME(p(n)), but this
doesn’t mean that P 6= P.)

Kannan observed the following consequence of Theorem 3 and of the Karp-Lipton
theorem.

Theorem 4 For every polynomial p(), there is a language L ∈ Σ2 such that L 6∈
SIZE(p(n)).

Proof: We consider two cases:

• if 3SAT 6∈ SIZE(p(n)); then we are done because 3SAT ∈ NP ⊆ Σ2.

• if 3SAT ∈ SIZE(p(n)), then NP ⊆ P/poly, so by the Karp-Lipton theorem we
have Σ3 = Σ2, and the language L ∈ Σ3 − SIZE(p(n)) given by Theorem 3 is
in Σ2.

�

3 The Valiant-Vazirani Theorem

In this section we begin to discuss the proof of the following result, due to Valiant
and Vazirani: suppose there is an algorithm for the satisfiability problem that always
find a satisfying assignment for formulae that have exactly one satisfiable assignment
(and behaves arbitrarily on other instances): then we can get an RP algorithm for
the general satisfiability problem, and so NP = RP.

We prove the result by presenting a randomized reduction that given in input a CNF
formula φ produces in output a polynomial number of formulae ψ0, . . . , ψn. If φ is
satisfiable, then (with high probability) at least one of the ψi is satisfiable and has
exactly one satisfying assignment; if φ is not satisfiable, then (with probability one)
all ψi are unsatisfiable.

The idea for the reduction is the following. Suppose φ is a satisfiable formula with n
variables that has about 2k satisfying assignments, and let h : {0, 1}n → {0, 1}k be a

3

hash function picked from a family of pairwise independent hash functions: then the
average number of assignments x such that φ(x) is true and h(x) = (0, . . . , 0) is about
one. Indeed, we can prove formally that with constant probability there is exactly
one such assignment,1 and that there is CNF formula ψ (easily constructed from φ
and h) that is satisfied precisely by that assignment. By doing the above construction
for values of k ranging from 0 to n, we obtain the desired reduction. Details follow.

Definition 5 Let H be a family of functions of the form h : {0, 1}n → {0, 1}m.
We say that H is a family of pair-wise independent hash functions if for every two
different inputs x, y ∈ {0, 1}n and for every two possible outputs a, b ∈ {0, 1}m we
have

P
h∈H

[h(x) = a ∧ h(y) = b] =
1

22m

Another way to look at the definition is that for every x 6= y, when we pick h at
random then the random variables h(x) and h(y) are independent and uniformly
distributed. In particular, for every x 6= y and for every a, b we have Ph[h(x) =
a|h(y) = b] = Ph[h(x) = a].

For m vectors a1, . . . , am ∈ {0, 1}m and m bits b1, . . . , bm, define ha1,...,am,b1,...,bm :
{0, 1}n → {0, 1}m as ha,b(x) = (a1 ·x+b1, . . . , am ·x+bm) where a ·x := Σiaixi mod 2,
and let HAFF be the family of functions defined this way. Then it is not hard to see
that HAFF is a family of pairwise independent hash functions.

1For technical reasons, it will be easier to prove that this is the case when picking a hash function
h : {0, 1}n → {0, 1}k+2.

4

	The Karp-Lipton Theorem
	Kannan's Theorem
	The Valiant-Vazirani Theorem

