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In this lecture, we first continue to talk about polynomial hierarchy. Then we prove
the Gacs-Sipser-Lautemann theorem that BPP is contained in the second level of the
hierarchy.

1 The hierarchy

Definition 1 (Polynomial hierarchy) L € X iff there are polynomials py, . .., p
and a polynomial time computable function F such that

YV if k is even

€ L < Jy, Vy,. ... Flx,y, ..., =1 h = o
T Y1-VY2 QrYrk ($ Y1 yk) where Q) {Elszzsodd

L € 1l iff there are polynomials py, ..., pr and a polynomial time computable function
F' such that

v€ L&Yy 3y o Quur-F(x,y1,. ., y0) =1 where Q) = 3 if k is even
YV if kis odd

For clarity, we omitted the conditions that each string y; must be of polynomial length
(v € {0, 1)),

One thing that is easy to see is that II;, = coX;. Also, note that, for all i < k — 1,
IT; C X4, ¥; C X, II; C 1Ig, 3; C II;. This can be seen by noticing that the predicates
F' do not need to “pay attention to” all of their arguments, and so a statement
involving k£ quantifiers can “simulate” a statement using less than k quantifiers.

Theorem 2 Suppose 11, = ¥, Then [y 1 = X1 = 2.

PRrooOF: For any language L € .1, we have that there exist polynomials pq, ..., pri1
and a polynomial time computable function F such that

re L e IV o Qe -F(r,yn, - Yk) = 1



where we did not explicitly stated the conditions y; € {0,1}70=D. Let us look at the
right hand side of the equation. What is following Jy; is a Il statement. Thus, there
is a L' € II;, such that

zeL eIy e{0,1}70) (2 9) e L

Under the assumption that II, = X, we have L' € X, which means that there are
polynomials p}, ..., p) and a polynomial time computable F” such that

(v,y1) € L' & 321 Vo, .. Qrar. F'((x,y1), 215 -+, 21) = 1
where we omitted the conditions z; € {0,1}#:(#), So now we can show that

rel sy .(v,y) el
& . (321 V2o Qe F (2, 01), 215 -+ o5 26) = 1)
< (y1,21) Voo o Qe F (2, (y1,21), 22,y 2) = 1)

And so L € ¥,.

Now notice that if C; and Cy are two complexity classes, then C; = Cy implies coCy =
coCs. Thus, we have 1l = coXy 1 = coXyp = Il = Xk, So we have [x = Y1 =
Y. O

2 BPP C)p

This result was first shown by Sipser and Gacs. Lautemann gave a much simpler
proof which we give below.

Lemma 3 If L is in BPP then there is an algorithm A such that for every x,
P(A(z,7) = right answer) > 1 — 5|

T

where the number of random bits |r| = m = |z|°M) and A runs in time |z|°W.
PROOF: Let A be a BPP algorithm for L. Then for every =,

P(A(x,r) = wrong answer) < %)
and A uses i (n) = n°" random bits where n = |z].

N k N
Do k(n) repetitions of A and accept if and only if at least ﬂ executions of A accept.
Call the new algorithm A. Then A uses k(n)m(n) random bits and

P(A(z,7) = wrong answer) < 27,

We can then find k(n) with k(n) = ©(logm(n)) such that = < 31c(n)1mfn)'



Theorem 4 BPP C 3.

Proor: Let L be in BPP and A as in the claim. Then we want to show that

v €L < Ty, ,ym €{0,1}"V2 € {0,1}"\/ A,y ® 2) = 1
i=1
where m is the number of random bits used by A on input x.
Suppose x € L. Then

, IP’y (BzA(z, 1 @ 2) =+ = AT, ym © 2) = 0)
1yeeey m
< > P Ay ®z) = =A@y, ®2) =0)
ze{0,1}m Yioeeslm
<om_1
(3m)m
<1

So

P (Vz\/A(m,y,ﬂ}z)) =1— P (FZA(z,;h®z2)= =A@, yn®2)=0)
Yiyeeey Ym . Yiyeeey Ym

> 0.

So a sequence (yi, ..., Yn) exists, such that Vz.\/, A(z,y; ® z) = 1.

Conversely suppose = ¢ L. Then fix a sequence (y1,...,¥yn). We have

IF’(\/A(HC,Z/Z*@Z><Z]P’ (r,y; ®2)=1)
Z 1

<
- 3m

C,Q_Ir—A 3

So

P(A(x,y1 ®2) == A(Z, Y & 2) = 0) IP’(\/Aacy@@z)—O>
2
3
> 0.

v

So for all y1,...,ym € {0,1}™ there is a z such that \/, A(z,y; ® z) = 0. O
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