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In this lecture, we first continue to talk about polynomial hierarchy. Then we prove
the Gács-Sipser-Lautemann theorem that BPP is contained in the second level of the
hierarchy.

1 The hierarchy

Definition 1 (Polynomial hierarchy) L ∈ Σk iff there are polynomials p1, . . . , pk

and a polynomial time computable function F such that

x ∈ L⇔ ∃y1.∀y2. . . . Qkyk.F (x, y1, . . . , yk) = 1 where Qk =

{
∀ if k is even

∃ if k is odd

L ∈ Πk iff there are polynomials p1, . . . , pk and a polynomial time computable function
F such that

x ∈ L⇔ ∀y1.∃y2. . . . Q′kyk.F (x, y1, . . . , yk) = 1 where Q′k =

{
∃ if k is even

∀ if k is odd

For clarity, we omitted the conditions that each string yi must be of polynomial length
(yi ∈ {0, 1}pi(|x|)).

One thing that is easy to see is that Πk = coΣk. Also, note that, for all i ≤ k − 1,
Πi ⊆ Σk, Σi ⊆ Σk, Πi ⊆ Πk, Σi ⊆ Πk. This can be seen by noticing that the predicates
F do not need to “pay attention to” all of their arguments, and so a statement
involving k quantifiers can “simulate” a statement using less than k quantifiers.

Theorem 2 Suppose Πk = Σk. Then Πk+1 = Σk+1 = Σk.

Proof: For any language L ∈ Σk+1, we have that there exist polynomials p1, . . . , pk+1

and a polynomial time computable function F such that

x ∈ L⇔ ∃y1.∀y2. . . . Qk+1yk+1.F (x, y1, . . . , yk+1) = 1
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where we did not explicitly stated the conditions yi ∈ {0, 1}pi(|x|). Let us look at the
right hand side of the equation. What is following ∃y1 is a Πk statement. Thus, there
is a L′ ∈ Πk such that

x ∈ L⇔ ∃y1 ∈ {0, 1}p1(|x|).(x, y1) ∈ L′

Under the assumption that Πk = Σk, we have L′ ∈ Σk, which means that there are
polynomials p′1, . . . , p

′
k and a polynomial time computable F ′ such that

(x, y1) ∈ L′ ⇔ ∃z1.∀z2. . . . Qkzk.F
′((x, y1), z1, . . . , zk) = 1

where we omitted the conditions zi ∈ {0, 1}p′
i(|x|). So now we can show that

x ∈ L⇔ ∃y1.(x, y1) ∈ L′

⇔ ∃y1.(∃z1.∀z2. . . . Qkzk.F
′((x, y1), z1, . . . , zk) = 1)

⇔ ∃(y1, z1).∀z2. . . . .Qkzk.F
′′(x, (y1, z1), z2, . . . , zk) = 1)

And so L ∈ Σk.

Now notice that if C1 and C2 are two complexity classes, then C1 = C2 implies coC1 =
coC2. Thus, we have Πk+1 = coΣk+1 = coΣk = Πk = Σk. So we have Πk+1 = Σk+1 =
Σk. �

2 BPP ⊆ Σ2

This result was first shown by Sipser and Gács. Lautemann gave a much simpler
proof which we give below.

Lemma 3 If L is in BPP then there is an algorithm A such that for every x,

P
r
(A(x, r) = right answer) ≥ 1− 1

3m
,

where the number of random bits |r| = m = |x|O(1) and A runs in time |x|O(1).

Proof: Let Â be a BPP algorithm for L. Then for every x,

P
r
(Â(x, r) = wrong answer) ≤ 1

3
,

and Â uses m̂(n) = no(1) random bits where n = |x|.

Do k(n) repetitions of Â and accept if and only if at least
k(n)

2
executions of Â accept.

Call the new algorithm A. Then A uses k(n)m̂(n) random bits and

P
r
(A(x, r) = wrong answer) ≤ 2−ck(n).

We can then find k(n) with k(n) = Θ(log m̂(n)) such that 1
2ck(n) ≤ 1

3k(n) ˆm(n)
. �
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Theorem 4 BPP ⊆ Σ2.

Proof: Let L be in BPP and A as in the claim. Then we want to show that

x ∈ L ⇐⇒ ∃y1, . . . , ym ∈ {0, 1}m∀z ∈ {0, 1}m
m∨

i=1

A(x, yi ⊕ z) = 1

where m is the number of random bits used by A on input x.

Suppose x ∈ L. Then

P
y1,...,ym

(∃zA(x, y1 ⊕ z) = · · · = A(x, ym ⊕ z) = 0)

≤
∑

z∈{0,1}m
P

y1,...,ym

(A(x, y1 ⊕ z) = · · · = A(x, ym ⊕ z) = 0)

≤ 2m 1

(3m)m

< 1.

So

P
y1,...,ym

(
∀z
∨
i

A(x, yi ⊕ z)

)
= 1− P

y1,...,ym

(∃zA(x, y1 ⊕ z) = · · · = A(x, ym ⊕ z) = 0)

> 0.

So a sequence (y1, . . . , ym) exists, such that ∀z.
∨

i A(x, yi ⊕ z) = 1.

Conversely suppose x /∈ L. Then fix a sequence (y1, . . . , ym). We have

P
z

(∨
i

A(x, yi ⊕ z)

)
≤
∑

i

P
z

(A(x, yi ⊕ z) = 1)

≤ m · 1

3m

=
1

3
.

So

P
z
(A(x, y1 ⊕ z) = · · · = A(x, ym ⊕ z) = 0) = P

z

(∨
i

A(x, yi ⊕ z) = 0

)
≥ 2

3
> 0.

So for all y1, . . . , ym ∈ {0, 1}m there is a z such that
∨

i A(x, yi ⊕ z) = 0. �
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