
Stanford University — CS254: Computational Complexity Handout 4
Luca Trevisan April 7, 2010

Last revised 4/29/2010

Today we show how to reduce the error probability of probabilistic algorithms, prove
Adleman’s theorem that polynomial time probabilistic algorithms can be simulated
by polynomial size circuits, and we give the definition of the polynomial hierarchy

1 Adleman’s Theorem

Last time we mentioned that if we start from a randomized algorithm that provides
the correct answer only with probability slightly higher than half, then repeating
the algorithm many times with independent randomness will make the right answer
appear the majority of the times with very high probability.

More formally, we have the following theorem.

Theorem 1 (Chernoff Bound) Suppose X1, . . . , Xk are independent random vari-
ables with values in {0, 1} and for every i, P[Xi = 1] = pi. Then, for any ε > 0:

P

[
k∑
i=1

Xi >
k∑
i=1

pi + kε

]
< e−2ε2k

P

[
k∑
i=1

Xi <
k∑
i=1

pi − kε

]
< e−2ε2k

The Chernoff bounds will enable us to bound the probability that our result is far
from the expected. Indeed, these bounds say that this probability is exponentially
small with respect to k.

Let us now consider how the Chernoff bounds apply to the algorithm we described
previously. We fix the input x and call p = Pr[A(x, r) = 1] over all possible random
sequences. We also define the independent 0/1 random variables X1, . . . , Xk such
that Xi = 1 if and only if A(x, ri) outputs the correct answer.

First, suppose x ∈ L. Then the algorithm A(k)(x, r1, . . . , rk) outputs the right answer
1, when

∑
iXi ≥ k/2. So, the algorithm makes a mistake when

∑
iXi < k/2.

We now apply the Chernoff bounds to bound this probability.

P[A(k)outputs the wrong answer on x]

1

= P[
∑
i

Xi <
k
2
]

≤ P[
∑
i

Xi − kp ≤ −k
6
]

≤ e−k/18

= 2−Ω(k)

The probability is exponentially small in k. The same reasoning applies also for the
case where x 6∈ L. Further, it is easy to see that by choosing k to be a polynomial
in |x| instead of a constant, we can change the definition of a BPP algorithm and
instead of the bound of 1

3
for the probability of a wrong answer, we could equivalently

have a bound of 1/2− 1/q(|x|) or 2−q(|x|), for a fixed polynomial q.

Would it be equivalent to have a bound of 1/2− 2−q(|x|)?

Definition 2 PP is the set of problems that can be solved by a nondeterministic
Turing machine in polynomial time where the acceptance condition is that a majority
(more than half) of computation paths accept.

Although superficially similar to BPP, PP is a very powerful class; PPP (polynomial
time computations with an oracle for PP) includes all of NP, quantum polynomial
time BQP, and the entire polynomial hierarchy Σ1 ⊆ Σ2 ⊆ . . . which we will define
later.

Now, we are going to see how the probabilistic complexity classes relate to circuit
complexity classes and specifically prove that the class BPP has polynomial size
circuits.

Theorem 3 (Adleman) BPP ⊆ SIZE(nO(1))

Proof: Let L be in the class BPP. Then by definition, there is a polynomial time
algorithm A and a polynomial p, such that for every input x

P
r∈{0,1}p(|x|)

[A(x, r) = wrong answer for x] ≤ 2−(n+1)

This follows from our previous conclusion that we can replace 1
3

with 2−q(|x|). We now
fix n and try to construct a circuit Cn, that solves L on inputs of length n.

Claim 4 There is a random sequence r ∈ {0, 1}p(n) such that for every x ∈ {0, 1}n
A(x, r) is correct.

2

Proof: Informally, we can see that, for each input x of length n, the number of
random sequences r that give the wrong answer is exponentially small. Therefore,
even if we assume that these sequences are different for every input x, their sum is
still less than the total number of random sequences. Formally, let’s consider the
probability over all sequences that the algorithm gives the right answer for all input.
If this probability is greater than 0, then the claim is proved.

P
r
[for every x,A(x, r) is correct] = 1− P

r
[∃x,A(x, r) is wrong]

the second probability is the union of 2n possible events for each x. This is bounded
by the sum of the probabilities.

≥ 1−
∑

x∈{0,1}n
P
r
[A(x, r)is wrong]

≥ 1− 2n · 2−(n+1)

≥ 1

2

�

So, we proved that at least half of the random sequences are correct for all possible
input x. Therefore, it is straightforward to see that we can simulate the algorithm
A(·, ·), where the first input has length n and the second p(n), by a circuit of size
polynomial in n.

All we have to do is find a random sequence which is always correct and build it
inside the circuit. Hence, our circuit will take as input only the input x and simulate
A with input x and r for this fixed r. Of course, this is only an existential proof,
since we don’t know how to find this sequence efficiently. �

In general, the hierarchy of complexity classes looks like the following picture, if we
visualize all classes that are not known to be equal as distinct.

3

It is, however, generally conjectured that P = BPP, in which case the complexity
map greatly simplifies:

2 Complexity Classes with Advice

In this section we prove an alternative characterization of classes of functions com-
putable by bounded-size circuits.

Let a : N→ N be a function (e.g. a(n) = 2n2).

Definition 5 P/a(n) is the class of decision problems such there is a sequence of
strings S1, S2, . . . , Sn where |Sn| ≤ a(n), and a polynomial-time algorithm A such
that ∀x.A(x, S|x|) correctly solves the problem.

4

Definition 6 P/poly =
⋃
k(P/O(nk))

Theorem 7 P/poly = SIZE(poly)

Proof: For any problem in P/poly, there is an algorithm A and a sequence of
strings S1, S2, ..., Sn, ... that can solve it. For inputs of length n, we can construct
Cn = A(x, Sn). Such set of circuits will solve the problem.
For any problem in SIZE(poly, there is a family of circuits {C1, C2, ..., Cn, ...} that
solves it. Consider constructing a circuit evaluation algorithm A(x,Cn) = Cn(x).
�

3 Polynomial hierarchy

Remark 8 (Definition of NP and coNP) A problem is in NP if and only if there
is a polynomial time computable F (·, ·) and a polynomial time bound p() such that

x is a YES-instance⇔ ∃y. y ∈ {0, 1}p(|x|) ∧ F (x, y)

coNP is the class of problems whose complement (switch YES-instance to NO-instance)
is in NP. Formally, a problem is in coNP if and only if there is a polynomial time
computable F (·, ·) and a polynomial time bound p() such that

x is a YES-instance⇔ ∀y : y ∈ {0, 1}p(|x|), F (x, y)

The polynomial hierarchy starts with familiar classes on level one: Σ1 = NP and
Π1 = coNP. For all i ≥ 1, it includes two classes, Σi and Πi, which are defined as
follows:

Definition 9 Σk is the class of all problems such that there is a polynomial time
computable F (·, ..., ·) and k polynomials p1(), ..., pk() such that

x is a YES-instance⇔

∃y1 ∈ {0, 1}p1(|x|).∀y2 ∈ {0, 1}p2(|x|). . . .

. . . ∀/∃
k is odd/even

yk ∈ {0, 1}pk(|x|). F (x, y1, . . . , yk)

Definition 10 Πk is the class of all problems such that there is a polynomial time
computable F (·, ..., ·) and k polynomials p1(), ..., pk() such that

x is a YES-instance⇔

∀y1 ∈ {0, 1}p1(|x|).∃y2 ∈ {0, 1}p2(|x|). . . .

. . . ∀/∃
k is odd/even

yk ∈ {0, 1}pk(|x|). F (x, y1, . . . , yk)

5

One thing that is easy to see is that Πk = coΣk. Also, note that, for all i ≤ k − 1,
Πi ⊆ Σk and Σi ⊆ Σk. These subset relations hold for Πk as well. This can be
seen by noticing that the predicates F do not need to “pay attention to” all of their
arguments, and so can represent classes lower on the hierarchy which have a smaller
number of them.

Exercise 1 ∀k.Σk has a complete problem.

Next time we will prove (a stronger version of) the following result:

Theorem 11 If Σk+1 = Σk, then ∀t ≥ k, Σt = Σk.

6

	Adleman's Theorem
	Complexity Classes with Advice
	Polynomial hierarchy

