
Stanford University — CS254: Computational Complexity Handout 3
Luca Trevisan April 5, 2010

In this lecture we introduce the computational model of boolean circuits and prove
that polynomial size circuits can simulate all polynomial time computations. We also
begin to talk about randomized algorithms.

1 Circuits

A circuit C has n inputs, m outputs, and is constructed with AND gates, OR gates
and NOT gates. Each gate has in-degree 2 except the NOT gate which has in-degree
1. The out-degree can be any number. A circuit must have no cycle. See Figure 1.

A circuit C with n inputs and m outputs computes a function fC : {0, 1}n → {0, 1}m.
See Figure 2 for an example.

AND

AND

 OR

x1 x2 x3 x4 nx

1z 2z zm

NOT

. . .

. . .

Figure 1: A Boolean circuit.

Define SIZE(C) = # of AND and OR gates of C. By convention, we do not count
the NOT gates.

To be compatible with other complexity classes, we need to extend the model to
arbitrary input sizes:

1

NOT

AND

 OR

AND

NOT

x1 x2

circuits
XOR

x3 x4

Figure 2: A circuit computing the boolean function fC(x1x2x3x4) = x1⊕x2⊕x3⊕x4.

Definition 1 A language L is solved by a family of circuits {C1, C2, . . . , Cn, . . .} if
for every n ≥ 1 and for every x s.t. |x| = n,

x ∈ L ⇐⇒ fCn(x) = 1.

Definition 2 Say L ∈ SIZE(s(n)) if L is solved by a family {C1, C2, . . . , Cn, . . .} of
circuits, where Ci has at most s(i) gates.

2 Relation to other complexity classes

Unlike other complexity measures, like time and space, for which there are languages
of arbitrarily high complexity, the size complexity of a problem is always at most
exponential.

Theorem 3 For every language L, L ∈ SIZE(O(2n)).

Proof: We need to show that for every 1-output function f : {0, 1}n → {0, 1}, f
has circuit size O(2n).

Use the identity f(x1x2 . . . xn) = (x1∧f(1x2 . . . xn))∨(x1∧f(0x2 . . . xn)) to recursively
construct a circuit for f , as shown in Figure 3.

2

x1 x2 nx

NOT

ANDAND

 OR

...

x2... xn)f(1 x2... xn)f(0

...

...

...

Figure 3: A circuit computing any function f(x1x2 . . . xn) of n variables assuming
circuits for two functions of n− 1 variables.

The recurrence relation for the size of the circuit is: s(n) = 3 + 2s(n− 1) with base
case s(1) = 1, which solves to s(n) = 2 · 2n − 3 = O(2n). �

The exponential bound is nearly tight.

Theorem 4 There are languages L such that L 6∈ SIZE(o(2n/n)). In particular, for
every n ≥ 11, there exists f : {0, 1}n → {0, 1} that cannot be computed by a circuit
of size 2n/4n.

Proof: This is a counting argument. There are 22n
functions f : {0, 1}n → {0, 1},

and we claim that the number of circuits of size s is at most 2O(s log s), assuming s ≥ n.
To bound the number of circuits of size s we create a compact binary encoding of
such circuits. Identify gates with numbers 1, . . . , s. For each gate, specify where the
two inputs are coming from, whether they are complemented, and the type of gate.
The total number of bits required to represent the circuit is

s× (2 log(n + s) + 3) ≤ s · (2 log 2s + 3) = s · (2 log 2s + 5).

So the number of circuits of size s is at most 22s log s+5s, and this is not sufficient to
compute all possible functions if

22s log s+5s < 22n

.

3

x1q0 x2 xn

.

.

. .
.
.

q

xx3 4

. . .

a b c d etime

tape position

Figure 4: t(n) × t(n) tableau of computation. The left entry of each cell is the tape
symbol at that position and time. The right entry is the machine state or a blank
symbol, depending on the position of the machine head.

This is satisfied if s ≤ 2n

4n
and n ≥ 11. �

The following result shows that efficient computations can be simulated by small
circuits.

Theorem 5 If L ∈ DTIME(t(n)), then L ∈ SIZE(O(t2(n))).

Proof: Let L be a decision problem solved by a machine M in time t(n). Fix n and
x s.t. |x| = n, and consider the t(n)× t(n) tableau of the computation of M(x). See
Figure 4.

Assume that each entry (a, q) of the tableau is encoded using k bits. By Proposition
3, the transition function {0, 1}3k → {0, 1}k used by the machine can be implemented
by a “next state circuit” of size k · O(23k), which is exponential in k but constant in
n. This building block can be used to create a circuit of size O(t2(n)) that computes
the complete tableau, thus also computes the answer to the decision problem. This
is shown in Figure 5. �

Corollary 6 P ⊆ SIZE(nO(1)).

On the other hand, it’s easy to show that P 6= SIZE(nO(1)), and, in fact, one can
define languages in SIZE(O(1)) that are undecidable.

4

q0

x1 x2 3x

next
state

next
state

next
state

next
state

next
state

next
state

.

.

. .
.
. .

.

.

next
state

next
state

next
statek bits

k bits k bits k bits

. . .

next state
circuit

xn. . .

. . .

check for accepting state

.

Figure 5: Circuit to simulate a Turing machine computation by constructing the
tableau.

3 Randomized Algorithms

First we are going to describe the probabilistic model of computation. In this model
an algorithm A gets as input a sequence of random bits r and the ”real” input x of
the problem. The output of the algorithm is the correct answer for the input x with
some probability.

Definition 7 An algorithm A is called a polynomial time probabilistic algorithm if
the size of the random sequence |r| is polynomial in the input |x| and A() runs in
time polynomial in |x|.

If we want to talk about the correctness of the algorithm, then informally we could
say that for every input x we need P[A(x, r) = correct answer for x] ≥ 2

3
. That is, for

every input the probability distribution over all the random sequences must be some
constant bounded away from 1

2
. Let us now define the class BPP.

Definition 8 A decision problem L is in BPP if there is a polynomial time algorithm
A and a polynomial p() such that :

∀x ∈ L P
r∈{0,1}p(|x|)

[A(x, r) = 1] ≥ 2/3

∀x 6∈ L P
r∈{0,1}p(|x|)

[A(x, r) = 1] ≤ 1/3

5

We can see that in this setting we have an algorithm with two inputs and some
constraints on the probabilities of the outcome. In the same way we can also define
the class P as:

Definition 9 A decision problem L is in P if there is a polynomial time algorithm
A and a polynomial p() such that :

∀x ∈ L : P
r∈{0,1}p(|x|)

[A(x, r) = 1] = 1

∀x 6∈ L : P
r∈{0,1}p(|x|)

[A(x, r) = 1] = 0

Similarly, we define the classes RP and ZPP.

Definition 10 A decision problem L is in RP if there is a polynomial time algorithm
A and a polynomial p() such that:

∀x ∈ L P
r∈{0,1}p(|x|)

[A(x, r) = 1] ≥ 1/2

∀x 6∈ L P
r∈{0,1}p(|x|)

[A(x, r) = 1] ≤ 0

Definition 11 A decision problem L is in ZPP if there is a polynomial time algo-
rithm A whose output can be 0, 1, ? and a polynomial p() such that :

∀x P
r∈{0,1}p(|x|)

[A(x, r) =?] ≤ 1/2

∀x, ∀r such that A(x, r) 6=? then A(x, r) = 1 if and only if x ∈ L

4 Relations between complexity classes

After defining these probabilistic complexity classes, let us see how they are related
to other complexity classes and with each other.

Theorem 12 RP⊆NP.

Proof: Suppose we have a RP algorithm for a language L. Then this algorithm is
can be seen as a “verifier” showing that L is in NP. If x ∈ L then there is a random
sequence r, for which the algorithm answers yes, and we think of such sequences r as
witnesses that x ∈ L. If x 6∈ L then there is no witness. �

We can also show that the class ZPP is no larger than RP.

6

Theorem 13 ZPP⊆RP.

Proof: We are going to convert a ZPP algorithm into an RP algorithm. The
construction consists of running the ZPP algorithm and anytime it outputs ?, the
new algorithm will answer 0. In this way, if the right answer is 0, then the algorithm
will answer 0 with probability 1. On the other hand, when the right answer is 1, then
the algorithm will give the wrong answer with probability less than 1/2, since the
probability of the ZPP algorithm giving the output ? is less than 1/2. �

Another interesting property of the class ZPP is that it’s equivalent to the class of
languages for which there is an average polynomial time algorithm that always gives
the right answer. More formally,

Theorem 14 A language L is in the class ZPP if and only if L has an average
polynomial time algorithm that always gives the right answer.

Proof: First let us clarify what we mean by average time. For each input x we
take the average time of A(x, r) over all random sequences r. Then for size n we
take the worst time over all possible inputs x of size |x| = n. In order to construct
an algorithm that always gives the right answer we run the ZPP algorithm and if
it outputs a ?, then we run it again. Suppose that the running time of the ZPP
algorithm is T , then the average running time of the new algorithm is:

Tavg =
1

2
· T +

1

4
· 2T + . . . +

1

2k
· kT = O(T)

Now, we want to prove that if the language L has an algorithm that runs in polynomial
average time t(|x|), then this is in ZPP. We run the algorithm for time 2t(|x|) and
output a ? if the algorithm has not yet stopped. It is straightforward to see that this
belongs to ZPP. First of all, the worst running time is polynomial, actually 2t(|x|).
Moreover, the probability that our algorithm outputs a ? is less than 1/2, since the
original algorithm has an average running time t(|x|) and so it must stop before time
2t(|x|) at least half of the times. �

Let us now prove the fact that RP is contained in BPP.

Theorem 15 RP⊆BPP

Proof: We will convert an RP algorithm into a BPP algorithm. In the case that
the input x does not belong to the language then the RP algorithm always gives
the right answer, so it certainly satisfies that BPP requirement of giving the right
answer with probability at least 2/3. In the case that the input x does belong to the
language then we need to improve the probability of a correct answer from at least
1/2 to at least 2/3.

7

Let A be an RP algorithm for a decision problem L. We fix some number k and
define the following algorithm:

• input: x,

• pick r1, r2, . . . , rk

• if A(x, r1) = A(x, r2) = . . . = A(x, rk) = 0 then return 0

• else return 1

Let us now consider the correctness of the algorithm. In case the correct answer is 0
the output is always right. In the case where the right answer is 1 the output is right
except when all A(x, ri) = 0.

if x 6∈ L P
r1,...,rk

[Ak(x, r1, . . . , rk) = 1] = 0

if x ∈ L P
r1,...,rk

[Ak(x, r1, . . . , rk) = 1] ≥ 1−
(

1

2

)k

It is easy to see that by choosing an appropriate k the second probability can go
arbitrarily close to 1. In particular, choosing k = 2 suffices to have a probability
larger than 2/3, which is what is required by the definition of BPP. In fact, by
choosing k to be a polynomial in |x|, we can make the probability exponentially close
to 1. This means that the definition of RP that we gave above would have been
equivalent to a definition in which, instead of the bound of 1/2 for the probability
of a correct answer when the input is in the language L, we had have a bound of

1−
(

1
2

)q(|x|)
, for a fixed polynomial q. �

Let, now, A be a BPP algorithm for a decision problem L. Then, we fix k and define
the following algorithm:

• input: x

• pick r1, r2, . . . , rk

• c =
∑k

i=1 A(x, ri)

• if c ≥ k
2

then return 1

• else return 0

8

In a BPP algorithm we expect the right answer to come up with probability more
than 1/2. So, by running the algorithm many times we make sure that this slightly
bigger than 1/2 probability will actually show up in the results.

We will prove next time that the error probability of algorithm A(k) is at most 2−Ω(k).

9

	Circuits
	Relation to other complexity classes
	Randomized Algorithms
	Relations between complexity classes

