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Lecture 11: Cayley Graphs of Abelian Groups

In which we show how to find the eigenvalues and eigenvectors of Cayley graphs of
Abelian groups, we find tight examples for various results that we proved in earlier
lectures, and, along the way, we develop the general theory of harmonic analysis
which includes the Fourier transform of periodic functions of a real variable, the
discrete Fourier transform of periodic functions of an integer variable, and the Walsh
transform of Boolean functions.

Earlier, we proved the Cheeger inequalities

λ2

2
≤ φ(G) ≤

√
2λ2

and the fact that Fiedler’s algorithm, when given an eigenvector of λ2, finds a cut
(S, V − S) such that φ(S, V − S) ≤ 2

√
φ(G). We will show that all such results are

tight, up to constants, by proving that

• The dimension-d hypercube Hd has λ2 = 1− 2
d

and h(Hd) = 1
d
, giving an infinite

family of graphs for which λ2
2

= φ(G), showing that the first Cheeger inequality
is exactly tight.

• The n-cycle Cn has λ2 = O(n−2), and φ(Cn) = 2
n
, giving an infinite family of

graphs for which φ(G) = Ω(
√
λ2), showing that the second Cheeger inequality

is tight up to a constant.

• There is an eigenvector of the 2nd eigenvalue of the hypercube Hd, such that
Fiedler’s algorithm, given such a vector, outputs a cut (S, V − S) of expansion
φ(S, V − S) = Ω(1/

√
d), showing that the analysis of the Fiedler’s algorithm is

tight up to a constant.

In this lecture we will develop some theoretical machinery to find the eigenvalues and
eigenvectors of Cayley graphs of finite Abelian groups, a class of graphs that includes
the cycle and the hypercube, among several other interesting examples.

For readers familiar with the Fourier analysis of Boolean functions, or the discrete
Fourier analysis of functions f : Z/NZ → C, or the standard Fourier analysis of
periodic real functions, this theory will give a more general, and hopefully interesting,
way to look at what they already know.
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1 Characters

We will use additive notation for groups, so, if Γ is a group, its unit will be denoted
by 0, its group operation by +, and the inverse of element a by −a. Unless, noted
otherwise, however, the definitions and results apply to non-abelian groups as well.

Definition 1 (Character) Let Γ be a group (we will also use Γ to refer to the set
of group elements). A function f : Γ→ C is a character of Γ if

• f is a group homomorphism of Γ into the multiplicative group C− {0}.

• for every x ∈ Γ, |f(x)| = 1

Though this definition might seem to not bear the slightest connection to our goals,
the reader should hang on because we will see that finding the eigenvectors and
eigenvalues of the cycle Cn is immediate once we know the characters of the group
Z/nZ, and finding the eigenvectors and eigenvalues of the hypercube Hd is immediate
once we know the characters of the group (Z/2Z)d.

Remark 2 (About the Boundedness Condition) If Γ is a finite group, and a is
any element, then

a+ · · ·+ a︸ ︷︷ ︸
|Γ| times

= 0

and so if f : Γ→ C is a group homomorphism then

1 = f(0) = f(a+ · · ·+ a︸ ︷︷ ︸
|Γ| times

) = f(a)|Γ|

and so f(a) is a root of unity and, in particular, |f(a)| = 1. This means that, for
finite groups, the second condition in the definition of character is redundant.

In certain infinite groups, however, the second condition does not follow from the first,
for example f : Z→ C defined as f(n) = en is a group homomorphism of (Z,+) into
(C− {0}, ·) but it is not a character.

Just by looking at the definition, it might look like a finite group might have an infinite
number of characters; the above remark, however, shows that a character of a finite
group Γ must map into |Γ|-th roots of unity, of which there are only |Γ|, showing a
finite |Γ||Γ| upper bound to the number of characters. Indeed, a much stronger upper
bound holds, as we will prove next, after some preliminaries.

Lemma 3 If Γ is finite and χ is a character that is not identically equal to 1, then∑
a∈Γ χ(a) = 0
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Proof: Let b be such that χ(b) 6= 1. Note that

χ(b) ·
∑
a∈Γ

χ(a) =
∑
a∈Γ

χ(b+ a) =
∑
a∈Γ

χ(a)

where we used the fact that the mapping a→ b+a is a permutation. (We emphasize
that even though we are using additive notation, the argument applies to non-abelian
groups.) So we have

(χ(b)− 1) ·
∑
a∈Γ

χ(a) = 0

and since we assumed χ(b) 6= 1, it must be
∑

a∈Γ χ(a) = 0. �

If Γ is finite, given two functions f, g : Γ→ C, define the inner product

〈f, g〉 :=
∑
a∈Γ

f(a)g∗(a)

Lemma 4 If χ1, χ2 : Γ→ C are two different characters of a finite group Γ, then

〈χ1, χ2〉 = 0

We will prove Lemma 4 shortly, but before doing so we note that, for a finite group Γ,
the set of functions f : Γ → C is a |Γ|-dimensional vector space, and that Lemma 4
implies that characters are orthogonal with respect to an inner product, and so they
are linearly independent. In particular, we have established the following fact:

Corollary 5 If Γ is a finite group, then it has at most |Γ| characters.

It remains to prove Lemma 4, which follows from the next two statements, whose
proof is immediate from the definitions.

Fact 6 If χ1, χ2 are characters of a group Γ, then the mapping x→ χ1(x) · χ2(x) is
also a character.

Fact 7 If χ is a character of a group Γ, then the mapping x → χ∗(x) is also a
character, and, for every x, we have χ(x) · χ∗(x) = 1.

To complete the proof of Lemma 4, observe that:

• the function χ(x) := χ1(x) · χ∗2(x) is a character;
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• the assumption of the lemma is that there is an a such that χ1(a) 6= χ2(a), and
so, for the same element a, χ(a) = χ1(a) · χ∗2(a) 6= χ2(a) · χ∗2(a) = 1

• thus χ is a character that is not identically equal to 1, and so

0 =
∑
a

χ(a) = 〈χ1, χ2〉

Notice that, along the way, we have also proved the following fact:

Fact 8 If Γ is a group, then the set of characters of Γ is also a group, with respect to
the group operation of pointwise multiplication. The unit of the group is the character
mapping every element to 1, and the inverse of a character is the pointwise conjugate
of the character.

The group of characters is called the Pontryagin dual of Γ, and it is denoted by Γ̂.

We now come to the punchline of this discussion.

Theorem 9 If Γ is a finite abelian group, then it has exactly |Γ| characters.

Proof: We give a constructive proof. We know that every finite abelian group is
isomorphic to a product of cyclic groups

(Z/n1Z)× (Z/n2Z)× · · · × (Z/nkZ)

so it will be enough to prove that

1. the cyclic group Z/nZ has n characters;

2. if Γ1 and Γ2 are finite abelian groups with |Γ1| and |Γ2| characters, respectively,
then their product has |Γ1| · |Γ2| characters.

For the first claim, consider, for every r ∈ {0, . . . , n− 1}, the function

χr(x) := e2πirx/n

Each such function is clearly a character (0 maps to 1, χr(−x) is the multiplicative
inverse of χr(x), and, recalling that e2πik = 1 for every integer k, we also have χr(a+
b mod n) = e2πira/n · e2πirb/n), and the values of χr(1) are different for different values
of r, so we get n distinct characters. This shows that Z/nZ has at least n characters,
and we already established that it can have at most n characters.
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For the second claim, note that if χ1 is a character of Γ1 and χ2 is a character of
Γ2, then it is easy to verify that the mapping (x, y) → χ1(x) · χ2(y) is a character
of Γ1 × Γ2. Furthermore, if (χ1, χ2) and (χ′1, χ

′
2) are two distinct pairs of characters,

then the mappings χ(x, y) := χ1(x) · χ2(y) and χ′(x, y) := χ′1(x) · χ′2(y) are two
distinct characters of Γ1 × Γ2, because we either have an a such that χ1(a) 6= χ′1(a),
in which case χ(a, 0) 6= χ′(a, 0), or we have a b such that χ2(b) 6= χ′2(b), in which case
χ(0, b) 6= χ′(0, b). This shows that Γ1 × Γ2 has at least |Γ1| · |Γ2| characters, and we
have already established that it can have at most that many �

This means that the characters of a finite abelian group Γ form an orthogonal basis
for the set of all functions f : Γ → C, so that any such function can be written as a
linear combination

f(x) =
∑
χ

f̂(χ) · χ(x)

For every character χ, 〈χ, χ〉 = |Γ|, and so the characters are actually a scaled-up
orthonormal basis, and the coefficients can be computed as

f̂(χ) =
1

|Γ|
∑
x

f(x)χ∗(x)

Example 10 (The Boolean Cube) Consider the case Γ = (Z/2Z)n, that is the
group elements are {0, 1}n, and the operation is bitwise xor. Then there is a character
for every bit-vector (r1, . . . , rn), which is the function

χr1,...,rn(x1, . . . , xn) := (−1)r1x1+···rnxn

Every boolean function f : {0, 1}n → C can thus be written as

f(x) =
∑

r∈{0,1}n
f̂(r) · (−1)

∑
i rixi

where

f̂(r) =
1

2n

∑
x∈{0,1}n

f(x) · (−1)
∑

i rixi

which is the boolean Fourier transform.

Example 11 (The Cyclic Group) To work out another example, consider the case
Γ = Z/NZ. Then every function f : {0, . . . , N − 1} → C can be written as
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f(x) =
∑

r∈{0,...,N−1}

f̂(r)e2πirx/n

where

f̂(x) =
1

N

∑
x

f(x)e−2πirx/n

which is the discrete Fourier transform.

2 A Look Beyond

Why is the term ”Fourier transform” used in this context? We will sketch an answer
to this question, although what we say from this point on is not needed for our goal
of finding the eigenvalues and eigenvectors of the cycle and the hypercube.

The point is that it is possible to set up a definitional framework that unifies both
what we did in the previous section with finite Abelian groups, and the Fourier series
and Fourier transforms of real and complex functions.

In the discussion of the previous section, we started to restrict ourselves to finite
groups Γ when we defined an inner product among functions f : Γ→ C.

If Γ is an infinite abelian group, we can still define an inner product among functions
f : Γ→ C, but we will need to define a measure over Γ and restrict ourselves in the
choice of functions. A measure µ over (a sigma-algebra of subsets of) Γ is a Haar
measure if, for every measurable subset A and element a we have µ(a + A) = µ(A),
where a + A = {a + b : b ∈ A}. For example, if Γ is finite, µ(A) = |A| is a Haar
measure. If Γ = (Z,+), then µ(A) = |A| is also a Haar measure (it is ok for a measure
to be infinite for some sets), and if Γ = (R,+) then the Lebesgue measure is a Haar
measure. When a Haar measure exists, it is more or less unique up to multiplicative
scaling. All locally compact topological abelian groups have a Haar measure, a very
large class of abelian groups, that include all finite ones, (Z,+), (R,+), and so on.

Once we have a Haar measure µ over Γ, and we have defined an integral for functions
f : Γ→ C, we say that a function is an element of L2(Γ) if∫

Γ

|f(x)|2dµ(x) <∞

For example, if Γ is finite, then all functions f : Γ→ C are in L2(Γ), and a function
f : Z→ C is in L2(Z) if the series

∑
n∈Z |f(n)|2 converges.

If f, g ∈ L2(Γ), we can define their inner product
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〈f, g〉 :=

∫
Γ

f(x)g∗(x)dµ(x)

and use Cauchy-Schwarz to see that |〈f, g〉| <∞.

Now we can repeat the proof of Lemma 4 that 〈χ1, χ2〉 = 0 for two different characters,
and the only step of the proof that we need to verify for infinite groups is an analog
of Lemma 3, that is we need to prove that if χ is a character that is not always equal
to 1, then ∫

Γ

χ(x)dµ(x) = 0

and the same proof as in Lemma 3 works, with the key step being that, for every
group element a, ∫

Γ

χ(x+ a)dµ(x) =

∫
Γ

χ(x)dµ(x)

because of the property of µ being a Haar measure.

We don’t have an analogous result to Theorem 9 showing that Γ and Γ̂ are isomorphic,
however it is possible to show that Γ̂ itself has a Haar measure µ̂, that the dual of Γ̂
is isomorphic to Γ, and that if f : Γ→ C is continuous, then it can be written as the
“linear combination”

f(x) =

∫
Γ̂

f̂(χ)χ(x)dµ̂(x)

where

f̂(χ) =

∫
Γ

f(x)χ∗(x)dµ(x)

In the finite case, the examples that we developed before correspond to setting µ(A) :=
|A|/|Γ| and µ̂(A) = |A|.

Example 12 (Fourier Series) The set of characters of the group [0, 1) with the
operation of addition modulo 1 is isomorphic to Z, because for every integer n we can
define the function χn : [0, 1)→ C

χn(x) := e2πixn

and it can be shown that there are no other characters. We thus have the Fourier
series for continuous functions f : [0, 1)→ C,
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f(x) =
∑
n∈Z

f̂(n)e2πixn

where

f̂(n) =

∫ 1

0

f(x)e−2πixndx

3 Cayley Graphs and Their Spectrum

Let Γ be a finite group. We will use additive notation, although the following defi-
nition applies to non-commutative groups as well. A subset S ⊆ Γ is symmetric if
a ∈ S ⇔ −a ∈ S.

Definition 13 For a group Γ and a symmetric subset S ⊆ Γ, the Cayley graph
Cay(Γ, S) is the graph whose vertex set is Γ, and such that (a, b) is an edge if and
only if b− a ∈ S. Note that the graph is undirected and |S|-regular.

We can also define Cayley weighted graphs: if w : Γ → R is a function such that
w(a) = w(−a) for every a ∈ Γ, then we can define the weighted graph Cay(G,w)
in which the edge (a, b) has weight w(b − a). We will usually work with unweighted
graphs, although we will sometimes allow parallel edges (corresponding to positive
integer weights).

Example 14 (Cycle) The n-vertex cycle can be constructed as the Cayley graph
Cay(Z/nZ, {−1, 1}).

Example 15 (Hypercube) The d-dimensional hypercube can be constructed as the
Cayley graph

Cay((Z/2Z)d, {(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)})

where the group is the set {0, 1}d with the operation of bit-wise xor, and the set S is
the set of bit-vectors with exactly one 1.

If we construct a Cayley graph from a finite abelian group, then the eigenvectors are
the characters of the groups, and the eigenvalues have a very simple description.

Lemma 16 Let Γ be a finite abelian group, χ : Γ→ C be a character of Γ, S ⊆ Γ be
a symmetric set. Let A be the adjacency matrix of the Cayley graph G = Cay(Γ, S).
Consider the vector x ∈ CΓ such that xa = χ(a).
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Then x is an eigenvector of G, with eigenvalue

∑
s∈S

χ(s)

Proof: Consider the a-th entry of Mx:

(Ax)a =
∑
b

Aa,bxb

=
∑

b:b−a∈S

χ(b)

=
∑
s∈S

χ(a+ s)

= xa ·
∑
s∈S

χ(s)

And so

Ax =

(∑
s∈S

χ(s)

)
· x

�

The eigenvalues of the form
∑

s∈S χ(s), where χ is a character, enumerate all the
eigenvalues of the graph, as can be deduced from the following observations:

1. Every character is an eigenvector;

2. The characters are linearly independent (as functions χ : Γ → C and, equiva-
lently, as vectors in CΓ);

3. There are as many characters as group elements, and so as many characters as
nodes in the corresponding Cayley graphs.

It is remarkable that, for a Cayley graph, a system of eigenvectors can be determined
based solely on the underlying group, independently of the set S.
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4 The Cycle

The n-cycle is the Cayley graph Cay(Z/nZ, {−1,+1}). Recall that, for every n ∈
{0, . . . , n− 1}, the group Z/nZ has a character χr(x) = e2πirx/n.

This means that for every r ∈ {0, . . . , n− 1} we have the eigenvalue

λr = e2πir/n + e−2πir/n = 2 cos(2πr/n)

where we used the facts that eix = cos(x) + i sin(x), that cos(x) = cos(−x), and
sin(x) = − sin(−x).

For r = 0 we have the eigenvalue 2. For r = 1 we have the second largest eigenvalue
2 cos(2π/n) = 2−Θ(1/n2). If λ is an eigenvalue of the adjacency matrix, then 1−λ/2
is an eigenvalue of the normalized Laplacian. From the above calculations, we have
that the second smallest Laplacian eigenvalue is Θ(n−2).

The expansion of the cycle is φ(Cn) ≥ 2/n, and so the cycle is an example in which
the second Cheeger inequality is tight.

5 The Hypercube

The group {0, 1}d with bitwise xor has 2d characters; for every r ∈ {0, 1}d there is a
character χr : {0, 1}d → {−1, 1} defined as

χr(x) = (−1)
∑

i rixi

Let us denote the set S by {e1, . . . , ed}, where we let ej ∈ {0, 1}d denote the bit-vector
that has a 1 in the j-th position, and zeroes everywhere else. This means that, for
every bit-vector r ∈ {0, 1}d, the hypercube has the eigenvalue

∑
j

χr(e
j) =

∑
j

(−1)rj = −|r|+ d− |r| = d− 2|r|

where we denote by |r| the weight of r, that is, the number of ones in r.

Corresponding to r = (0, . . . , 0), we have the eigenvalue d.

For each of the d vectors r with exactly one 1, we have the second largest eigenvalued−
2. The second smallest Laplacian eigenvalue is 1− (d− 2)/d = 2/d.

Let us compute the expansion of the hypercube. Consider “dimension cuts” of the
form Si := {x ∈ {0, 1}n : xi = 0}. The set Si contains half of the vertices, and the
number of edges that cross the cut (Si, V − Si) is also equal to half the number of
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vertices (because the edges form a perfect matching), so we have φ(Si, V − Si) = 1
d

and so φ(G) ≤ 1
d
.

These calculations show that the first Cheeger inequality λ2/2 ≤ φ(G) is tight for the
hypercube.

Finally, we consider the tightness of the approximation analysis of Fiedler’s algorithm.

We have seen that, in the d-dimensional hypercube, the second eigenvalue has mul-
tiplicity d, and that its eigenvectors are vectors xj ∈ R2d such that xja = (−1)aj .
Consider now the vector x :=

∑
j xj; this is still clearly an eigenvector of the second

eigenvalue. The entries of the vector x are

xa =
∑
j

(−1)aj = d− 2|a|

Suppose now that we apply Fiedler’s algorithm using x as our vector. This is equiv-
alent to considering all the cuts (St, V − St) in the hypercube in which we pick a
threshold t and define St := {a ∈ {0, 1}n : |a| ≥ t}.
Some calculations with binomial coefficients show that the best such “threshold cut”
is the “majority cut” in which we pick t = n/2, and that the expansion of Sn/2 is

φ(Sn/2, V − Sn/2) = Ω

(
1√
d

)
This gives an example of a graph and of a choice of eigenvector for the second eigen-
value that, given as input toFiedler’s algorithm, result in the output of a cut (S, V −S)
such that φ(S, V − S) ≥ Ω(

√
φ(G)). Recall that we proved φ(S, V − S) ≤ 2

√
φ(G),

which is thus tight, up to constants.
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