
Bocconi University — 41000: Graph Theory Handout 10
Luca Trevisan March 1, 2022

Lecture 10: Semidefinite Programming for Planted

Clique

In which we show that, in the computationally tractable regime k �
√
n of the planted

clique problem, the planted clique is the unique optimum solution of a Semidefinite
Programming relaxation of the maximum clique problem. We also study the robustness
of SBM and planted clique algorithms to adversarial manipulations of the input.

1 A Semidefinite Programming Relaxation of Max-

imum Clique and its Dual

Following what we did for the SBM, we are going to formulate a Semidefinite Pro-
gramming relaxation of the maximum clique problem, formulate its dual, and then
use duality to argue that, for graphs coming from the planted clique distribution,
the planted clique is, with high probability, the unique optimum of the Semidefinite
Program.

To formulate a Semidefinite Programming relaxation of a combinatorial problem, it is
helpful to first formulate the combinatorial problem as a homogeneous quadratic opti-
mization problem, because we can then mechanically relax the homogeneous quadratic
optimization problem to a semidefinite program.

Given a graph G = (V,E), the maximum clique problem can be formulated as the
quadratic programming problem

maximize
∑
v∈V

xv

subject to

x2
v = xv ∀v ∈ V

xuxv = 0 ∀(u, v) 6∈ E

(1)

The constraint x2
v = xv forces each xv to be either 0 or 1, and the other constraints

require the set of vertices v such that xv 6= 0 to be a clique, because two non-zero
edges cannot be the endpoints of a non-edge (sorry for all the negations, this discussion

1

would be a bit cleaner if we talked about independent set instead of clique). The cost
function is equal to the number of v such that xv 6= 0, and hence counts the number
of vertices in a maximum clique.

The challenge in translating (1) to a semidefinite program is that is it not an homoge-
nous quadratic program. There is a standard technique to “homogenize” quadratic
programs, which involves adding a new variable x0, require x2

0 = 1, and then proceed
as if x0 = 1. With these ideas, the quadratic program becomes:

maximize
∑
v∈V

x2
v

subject to

x2
0 = 1

x2
v = xvx0 ∀v ∈ V

xuxv = 0 ∀(u, v) 6∈ E

(2)

A feasible solution of the above quadratic program is such that x0 = ±1 and each xv

equals either 0 or x0. The non-edge constraints enforce that the vertices such that
xv 6= 0 form a clique, and the cost function counts the number of such vertices.

The above quadratic program can be mechanically relaxed to the semidefinite program
below.

maximize
∑
v∈V

||xv||2

subject to

||x0||2 = 1

||xv||2 = 〈xv, x0〉 ∀v ∈ V

〈xu, xv〉 = 0 ∀(u, v) 6∈ E

(3)

The above SDP is called the Lovasz Theta function of the (complement of the) graph,
and it has been extensively studied. Lovasz found several equivalent formulations of
the above relaxation and of its dual. Without developing the whole theory of the
Theta function, let us start again with another quadratic formulation of maximum

2

clique, which is “natively” homogenous.

maximize

(∑
v∈V

xv

)2

subject to ∑
v∈V

x2
v = 1

xuxv = 0 ∀(u, v) 6∈ E

(4)

It might not be immediately clear that the above quadratic program is a formulation
of the maximum clique problem, but if C is a clique in the graph and k = |C|, then
we can assign xv = 1√

k
if v ∈ C and xv = 0 otherwise, which is feasible and has cost

k. Thus the optimum of (2) is at least the size of the maximum clique in the graph.
On the other hand, if {xv}v∈V is a feasible solution, and C = {v : xv 6= 0}, then C is
a clique because of the non-edge constraints, and the cost of the solution is(∑

v∈V

xv

)2

=

(∑
v∈C

xv

)2

≤ |C| ·
∑
v∈C

x2
v = |C|

and so the size of the maximum clique in the graph is an upper bound to the optimum
of (2), and hence the two quantities are equal.

The standard semidefinite programming relaxation of (2) is

maximize

∥∥∥∥∥∑
v∈V

xv

∥∥∥∥∥
2

subject to ∑
v∈V

||xv||2 = 1

〈xu, xv〉 = 0 ∀(u, v) 6∈ E

(5)

It possible to prove that (5) is equivalent to (3), although we will not prove this fact.
We can also write (5) as

maximize J •X
subject to

I •X = 1

Xu,v = 0 ∀(u, v) 6∈ E

X � 0

(6)

3

and its dual is very simple:

minimize y

subject to

y · I + M � J

Mu,v = 0 ∀(u, v) ∈ E

Mv,v = 0 ∀v ∈ V

(7)

Indeed, we see that if y,M are feasible for (7) and X is feasible for (6), then

J •X ≤ (y · I + M) •X = y

where the first inequality follows from the fact that X � 0 and J � yI + M and the
final equality follows from M •X = 0 (the two matrices have disjoint sets of non-zero
entries) and I •X = 1 (this is a constraint on X).

2 Constructing a Dual Solution

We need to find a matrix M whose non-zero entries are concentrated on the non-edges
of G and such that this matrix plus k · I dominates J in the PSD sense, where k is
the size of the planted clique.

We know that if A is the adjacency matrix of G and Ā is the adjacency matrix of the
complement graph (that is Āu,v = 1 for the non-edges (u, v) of G) we have

E Ā =
1

2
J − 1

2
1C1T

C

where C is the planted clique. Furthermore we have, from previously discussed con-
centration results, that with high probability:∥∥∥∥Ā− 1

2
J − 1

2
1C1T

C

∥∥∥∥ ≤ O(
√
n)

and so

J � 2Ā− 1C1T
C + O(

√
n)I

which is almost what we are looking for, because 2Ā is a matrix that is non-zero only
on non-edges of G and O(

√
n) ≤ k.

The main problem is the 1C1T
C term. Following what we did for the SBM, we could

hope to prove

4

J � 2Ā + kI

by arguing that if x ⊥ 1C , then

xT (2Ā + kI − J)x = xT (2Ā− 1C1T
C + kI − J)x > 0 (8)

and then proving that
(2Ā + kI − J)1C = 0 (9)

We definitely have (8), but there is a problem with (9): the expression on the left is
actually 0 in the coordinates of C, but for coordinates u 6∈ C we have

((2Ā + kI − J)1C)u = 2 · (number of non-neighbors of v in C) − k

We can introduce a “correction” term, by exploiting the fact that, with high proba-
bility, all the above quantities are in the range ±O(

√
k log n). Define the matrix N

as follows:

Nu,v =

2− k

(number of non-neighbors of u in C)
if u 6∈ C, v ∈ C, and (u, v) 6∈ E

0 otherwise

Tracing the definitions shows that N is non-zero only on non-edges, and that

(N · 1C)u = 2 · (number of non-neighbors of v in C) − k

so that
((2Ā−N + kI − J)1C = 0

We also have, with high probability, ||N || ≤ O(
√
k log n), and so, provided that

k �
√
k log n +

√
n we derive that for all x ⊥ 1C

xT (2Ā−N + kI − J)x = xT (2Ā−N − 1C1T
C + kI − J)x > 0

So we have obtained a dual solution, where M = 2Ā−N and y = k that proves that
the size of the maximum clique is an upper bound to the value of the SDP (under
conditions that hold with high probability) and 1C is the unique optimum solution
(because every other feasible solution will have a strictly smaller objective value).

3 Robustness

We have already seen some advantages of Semidefinite Programming over spectral
methods for problems such as SBM and planted clique: an approximate solution

5

for SBM can be recovered even in the regime of constant average degree, in which
spectral methods do not work (unless one adds a pre-processing step that regularizes
the graphs), and in both SBM and planted cliques there are regimes in which SDP
finds the hidden solution without any post-processing step, since the hidden solution
is the unique optimum of the SDP.

An additional advantage of SDP is that it does not “overfit” to the probabilistic
models that we discussed, and it keeps working even in the presence of deviations
from the distribution.

To provide a rigorous approach to the study of robustness, it is possible to study
semi-random generative models in which an instance is produced by first sampling an
instance from a probabilistic model (for example a graph from the SBM or from the
planted clique distribution), and then allowing an adversary to modify the instance
in a certain limited way.

In such models, the spectral algorithms that we described and that work, in some
regimes, in the SBM and the planted clique model, fail even in semi-random models
in which the adversary is “helpful.” In the SBM, an adversary is “helpful” if, after
a graph is sampled from the SBM, the adversary only deletes edges that cross the
partition and adds edges that do not cross the partition. In the planted clique case,
an adversary is “helpful” if it only deletes non-clique edges (and does not add any
edge). Such adversaries are called “helpful” because they change the instance in ways
that, intuitively, should make the task of finding the hidden solution easier.

We will not prove it, but it is possible to prove that the spectral algorithm for the
SBM and the spectral algorithm for planted clique that we described can be made to
fail by a helpful adversary.

In the case of SDP, the analysis for the random case holds even in the semi-random
helpful case. Consider the regime in which the SDP has the hidden partition as its
unique optimal solution. It is not difficult to show that any change made by a helpful
adversary preserves the invariant that the hidden partition is the unique optimal
solution. The same is true for the SDP for planted clique described in these notes.
Suppose that G is a graph with a planted clique C of size k, and suppose that 1

k
1C1T

C

is the unique optimal solution of the SDP (5). If a helpful adversary deletes any
non-clique edge, then 1

k
1C1T

C is still a feasible solution of value k; furthermore, the
process of removing edges adds constraints to the SDP, and hence restricts the set
of feasible solution. If, before the helpful adversary intervened, all feasible solutions
different from 1

k
1C1T

C had cost < k, then the same will be true for a stronger reason
after the intervention of the helpful adversary, and so the planted clique remains the
unique optimal solution even after the adversarial changes.

6

	A Semidefinite Programming Relaxation of Maximum Clique and its Dual
	Constructing a Dual Solution
	Robustness

