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Lecture 9: Exact Community Detection in the SBM

In which we show that, for a certain range of parameters, the unique optimal solution
of the Semidefinite Program associated to a SBM graph is the hidden partition.

1 The Algorithm

In the past lecture, we introduce the following SDP relaxation of the problem of
finding a sparsest balanced cut.

maximize
∑
u,v∈V

Au,v · 〈xu, xv〉

subject to ‖xv‖2 = 1,∀v ∈ V

‖
∑
v∈V

xv‖2 = 0.

(1)

And we introduced the following algorithm.

• Solve the semi-definite programming above.

• Let x∗1, . . . ,x
∗
n be the optimal solution and X∗ = (X∗ij) such that X∗ij = 〈x∗i ,x∗j〉.

• Find z = (z1, . . . , zn), which is the eigenvector corresponding to the largest
eigenvalue of X∗.

• Let S = {i : zi > 0}, V − S = {i : zi ≤ 0}.

• Output (S, V − S) as our partition.

If the graph is sampled from the SBMn,p,q distribution, and if we define, as usual,
a := pn/2 and b := qn/2, today we will prove that

• There is an absolute constant β such that, if a − b ≥ β
√

log n
√
a+ b, the

algorithm recovers the exact solution with high probability.
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If χ ∈ {±1}n is the vector such that χv = −1 for v ∈ V1 and χv = 1 for v ∈ V2, where
(V1, V2) is the hidden partition, our goal will be to show that, with high probability,
the unique optimal solution X∗ of the SDP is X∗ = χχT , so the eigenvector of its
largest eigenvalue is χ and the reconstruction is exact.

We will need to show that all feasible solutions X 6= χχT have an objective function
value smaller than the objective function value of χχT , and so we need tools to upper
bound the value of feasible solutions. Such tools will come from the theory of duality
of Semidefinite Programming. In order to introduce such ideas, we will first revisit
duality in Linear Programming.

2 LP and SDP duality

Duality provides a method to upper bound the optimal value of maximization prob-
lems (and lower bound the optimal value of minimization problems). In the linear
case, suppose we start with a maximization LP:

max cTx s.t. Ax = b, x ≥ 0,

where c ∈ Rn, b ∈ Rm and A ∈ Rm×n is a matrix of constraint coefficients.

If we wanted to certify that any feasible point for this LP satisfied a certain upper
bound on cTx, one natural strategy is to attempt to represent c as a linear combination
of the rows aj of A. Indeed, if we managed to write c =

∑m
j=1 yjaj, we would

necessarily get that any feasible point had value exactly equal to

m∑
j=1

yja
T
j x = yTAx = bTy.

Due to the non-negativity constraint on x, however, we do not need to require that c
be a linear combination of the rows of A. Instead, it suffices to look for coefficients yj
such that c ≤

∑m
j=1 yjaj = ATy. Any such y yields an upper bound on the optimum

of bTy. The problem of finding the optimal lower bound by this method is also an
LP, given by:

min bTy s.t. ATy ≥ c.

In the language of duality theory, (2) is the primal program and (2) is the dual.

The informal argument we sketched above can be formalized as the following chain of
inequalities to prove that the value of the dual (2) is an upper bound on the value of
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the primal (2). Indeed, if x ∈ Rn is primal feasible and y ∈ Rm is dual feasible, then

cTx ≤
(
ATy

)T

x,

= yTAx

= yT b

= bTy,

and the claim follows.

A similar construction can be defined for SDPs. To see how this works, let • denote
the matrix inner product on Rn×n. That is, M •M ′ : =

∑
i,j MijM

′
ij. An SDP can

then be expressed as

maxC •X, s.t. A(j) •X = bj, 1 ≤ j ≤ m,

X � 0

where the matrices A(j) ∈ Rn×n and the notation M �M ′ is understood as meaning
that M −M ′ is a PSD matrix.

We can attempt to port over the idea of the LP dual to this new setting as follows:

min bTy s.t.
m∑
j=1

yjA
(j) � C.

We now prove that in fact this construction yields weak duality in the sense that the
optimum of (2) is an upper bound on the optimum of (2).

For this, again suppose X ∈ Rn×n is primal feasible and y ∈ Rm is dual feasible (that
is, feasible for (2)). We then observe that

bTy =
m∑
j=1

yjbj

=
m∑
j=1

yj

(
A(j) •X

)

=

[ m∑
j=1

yjA
(j)

]
•X.

Now the only question is, how do we relate

[∑m
j=1 yjA

(j)

]
• X to C · X given that[∑m

j=1 yjA
(j)

]
� C? The following lemma answers this question for us.
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Lemma 1 Suppose A, B ∈ Rn×n are PSD. Then A •B ≥ 0.

Proof: Recall that we may write A =
∑n

k=1 λkvkv
T
k , where each λk ≥ 0 and the vk

form an orthonormal basis for Rn. By linearity of the matrix inner product, we then
have

A •B =
n∑

k=1

λk ·
(
vkv

T
k •B

)
.

But now we notice that

vkv
T
k •B =

n∑
i=1

n∑
j=1

vk,ivk,j ·Bij

= vTkBvk ≥ 0.

Since each λk ≥ 0, we conclude that A •B ≥ 0, as required. �

Applying the conclusion of Lemma 1 to the result of the chain of inequalities (2), we
find

bTy ≥
[ m∑

j=1

yjA
(j)

]
•X ≥ C •X.

Taking a minimum over the LHS and a maximum over the RHS yields the comparison
of optima that we sought.

3 Duality for the SBM

To see how duality can help us with the SBM, let’s first rewrite the SDP relaxation
of the minimum balanced cut problem in a way that looks more like the SDP we
analyzed above.

Our SDP can be formulated as

maxA •X s.t. Eii •X = 1, 1 ≤ i ≤ n

J •X = 0,

X � 0.

where we used Eii to denote the matrix that is equal to 1 in the position (i, i) and is
zero everywhere else.

We note that in the notation of (2), we can let the constraint index run from 0 to
n and set A(0) = J and A(j) = Ejj for 1 ≤ j ≤ n. The constraint vector is then
b =

(
0 1n

)
∈ Rn+1.
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We are now in a position to write down the dual. For convenience in what follows,
we shall view the dual variable as

(
y0 y

)
∈ Rn+1, so the notation will be slightly

different from the dual formulation (2). In the modified notation, we have

min
n∑

i=1

yi s.t. diag
(
y
)

+ y0J � A,

where for any vector v ∈ Rn, diag
(
v
)

denotes the corresponding diagonal matrix
whose entry at

(
i, i
)

is vi.

4 Exact Reconstruction in the SBM

We are now ready to prove our main result, that we state formally below. As usual,
a = pn

2
is the average internal degree and b = qn

2
is the average external degree.

Theorem 2 There exists a universal constant β > 0 such that whenever a − b >
β
√

log n
√
a+ b, the solution of the SDP relaxation (1) is given by χχT . In particular,

solving the SDP relaxation yields exact recovery in the SBM in this regime.

4.1 A candidate dual certificate

The main idea behind our proof is that we already know a primal feasible solution to
the SDP relaxation (1). Indeed, we can just set

Xij =

{
1 if i and j are in the same community,

−1 otherwise.
(2)

Clearly Xii = 1 for all 1 ≤ i ≤ n and J • X = 0 because the communities have the
same size. Meanwhile, X = χχT , where χ is the indicator of the cut, so it is also PSD.
Thus, it is a feasible point for the primal SDP (3) and corresponds to the optimum
of the unrelaxed combinatorial problem.

Our aim is to show that actually the feasible solution (2) is the unique optimal
solution. The first step toward this goal is to show that it is in fact optimal, and we
shall do this by exhibiting a dual solution whose dual objective value is equal to the
primal value of the combinatorial solution.

Notice that the value of the combinatorial solution in the primal is given by

A •X =
n∑

i=1

[ ∑
j in same community as i

Aij −
∑

j in other community

Aij

]

=
n∑

i=1

(
ai − bi

)
,
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where ai is the within-community (or internal-) degree of i and bi is the cross-
community (or external-) degree of i.

A candidate for a dual solution with the same objective value is thus given by taking

yi = ai − bi, 1 ≤ i ≤ n, and y0 =
a+ b

n
,

where the latter only matters for feasibility and not the objective value. We stress that
this vector is actually a random variable, since the ai and bi are random quantities.

It is clear by inspection that (4.1) specifies dual variables that achieve the value of
the combinatorial solution (2). The only question is whether this specification of
the variables yields a dual feasible point. The main thrust of the proof is thus to
show that, with high probability, the proposed dual solution is indeed feasible—and
therefore optimal, since it achieves a primal feasible value of the objective function.

Feasiblity of the proposed dual certificate is equivalent to the positive definiteness
condition

M : = diag
(
y
)

+ y0J − A � 0.

We shall actually prove a stronger statement that will be useful for the complementary
slackness part of the proof. We intend to show that (a) Mχ = 0 with probability
1, where again χ is the indicator of the cut and that (b) xTMx > 0 for all nonzero
x ⊥ χ with high probability.

The first statement (a) we shall directly verify below. The second (b) will follow from
a matrix concentration argument: we shall show that apart from one eigenvalue of
0 corresponding to χ, the eigenvalues of E

[
M
]

are all a − b and we will then argue

that with high probability
∣∣∣∣M −E

[
M
]∣∣∣∣

op
≤ O

(√
log n

√
a+ b

)
, which will yield the

theorem when a− b > c
√

log n
√
a+ b for a suitable absolute constant c > 0.

To verify that Mχ = 0 with probability 1, we compute

Mχ = diag
(
y
)
· χ− Aχ+ Jχ

= diag
(
y
)
· χ− Aχ,

where we have used balance to deduce Jχ = 0. We now observe that(
diag

(
y
)
· χ
)
i

=
(
ai − bi

)
χi,

while (
Aχ
)
i

=
n∑

j=1

Aijχj

= χi

n∑
j=1

Aijχiχj

=
(
ai − bi

)
χi,
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where we have used the fact that χiχj = 1 if i and j are in the same community and
−1 otherwise. Thus, diag

(
y
)
χ = Aχ and the claim follows.

On the other hand, we observe E
[
yi
]

= E
[
ai − bi

]
= a− b for 1 ≤ i ≤ n. Thus,

E
[
M
]

=
(
a− b

)
· I +

a+ b

n
· J − E

[
A
]

=
(
a− b

)
· I +

a+ b

n
· J − a+ b

n
· J − a− b

n
· χχT

=
(
a− b

)
· I − a− b

n
· χχT .

It is now clear that χ is in the nullspace of E
[
M
]

(as it must be since it is in the
nullspace of M with probability 1) and that all the other eigenvalues of E

[
M
]

are
a− b, as claimed.

We now make the following claim without proof. The proof uses a matrix analog of
the Chernoff bound (the “Matrix Bernstein inequality”).

Lemma 3 With high probability over the choice of the graph,∣∣∣∣M − E
[
M
]∣∣∣∣ ≤ O

(√
log n

√
a+ b

)
The following Lemma is the core of our analysis. (Note that it is not a probabilistic
statement.)

Lemma 4 Suppose that b − a > ||M − EM ||. Then the solution X = χχT is the
unique optimum for the minimum bisection SDP.

Proof: We begin by showing that y0, . . . , yn defined above is feasible for the dual,
which implies that χχT is an optimal solution. Let x be any vector, and write
x = αχ+ y, where y is orthogonal to χ. Then

xTMx = (αχ+ y)TM(αχ+ y)

= α2χTMχ+ 2αyMχ+ yTMy

= yTMy

where the last line uses the fact, which we established before, that Mχ = 0 for every
graph. Since y is orthogonal to χ, we have

yT (EM)y = (a− b) · ||y||2
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and, by definition of spectral norm and the assumption of the lemma, we have that,
if y 6= 0,

yTMy ≥ yT (EM)y − ||M − EM || · ||y||2 = (a− b− ||M − EM ||) · ||y||2 > 0

We conclude that
xTMx ≥ 0

for every x, meaning that M � 0, and that

xTMx > 0

for every x that is not a multiple of χ.

From the fact that M is PSD we have

∑
v

(av − bv) = Cost({xv}v∈V ) = A ·X

≤ [diag(a1 − b1, . . . , an − bn) +
a+ b

n
· J ] ·X

≤ diag(a1 − b1, . . . , an − bn) ·X +
a+ b

n
[J ·X]

=
∑
v

yv ·Xv,v +
a+ b

n
·
∑
u,v

〈xu,xv〉

=
∑
v

yv +
a+ b

n
‖
∑
v

xv‖2

=
∑
v

(av − bv)

Which implies that χχT is an optimal solution. Let now X be any other optimal
solution.

Thus, all of the above inequalities are actually equalities, and we have:

A ·X = [diag(a1 − b1, . . . , an − bn) +
a+ b

n
· J ] ·X

which implies [diag(a1 − b1, . . . , an − bn) +
a+ b

n
· J − A] ·X = M ·X = 0

To show uniqueness of our solution χχT , it suffices to show that the X = χχT is the
only solution that satisfies M ·X = 0.
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We showed that the assumption of the lemma imply that for all x ⊥ χ:

xTMx ≥ (a− b)−O(
√

log n
√
a+ b) > 0

We can also write a PSD matrix as positive combinations of certain rank 1 matrices
ziz

T
i , so:

X =
∑
i

λiziz
T
i where λi > 0

M ·X = M · (
∑
i

λiziz
T
i )M =

∑
i

λi(z
T
i Mzi)

The quantity zT
i Mzi will always be strictly positive, unless either λi = 0 or zi is

parallel to χ. Therefore, if M · X = 0, we must have X = χχT , which proves
uniqueness of our solution. �

Putting everything together, we see that there is a constant β such that, if a − b >
β ·
√

log n ·
√
a+ b, then with high probability the unique optimum of the SDP is χχT

and the algorithm of the previous lecture finds the hidden partition.
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