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Lecture 7: Spectral methods for SBM and an intro-

duction to Semidefinite Programming

In which we study a spectral algorithm that performs community detection in the
stochastic block model, and we begin to work with semidefinite programming.

1 Spectral Community Detection

Given a graph G = (V,E) sampled from the SBMn,p,q distribution, we consider the
following algorithm:

• Let A be the adjacency matrix of G, and compute an eigenvector x of the largest
eigenvalue of the matrix A− p+q

2
J .

• Output the partition of V defined as ({v : xv < 0}, {v : xv ≥ 0})

We will briefly sketch an analysis of the algorithm.

When we introduced the stochastic block model, we noted that, for a fixed partition,
the expectation of A has the rank-two decomposition

EA =

(
p+ q

2

)
J +

p− q
2

(
1 −1
−1 1

)
(Strictly speaking, the above decomposition holds for EA + pI, but the term pI of
spectral norm p will be dominated in subsequent computations by error terms of much
bigger spectral norm). If A is such that

||A− EA|| ≤ ε · (p− q)
2

· n (1)

then
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∥∥∥∥(A− (p+ q

2

)
J

)
− p− q

2

(
1 −1
−1 1

)∥∥∥∥ ≤ ε · (p− q)
2

· n

and the Davis-Kahan Theorem implies that if χ is the ±1 indicator vector of the

partition, that is, the vector such that χχT =

(
1 −1
−1 1

)
and if x is an eigenvector

of the largest eigenvalue of A− p+q
2
J then

| sin(x, χ)| ≤ ε

1− ε
and then, by scaling x so that its inner product with χ is nonnegative and ||x||2 = n
we have

〈x, χ〉 = ||x|| · ||χ|| · cos(x, χ) = n ·
√

1− sin2(x, χ) ≥ n ·
√

1−O(ε2) ≥ 1− n ·O(ε2)

and so
||x− χ||2 = 2n− 2〈x, χ〉 ≤ n ·O(ε2)

which implies that the partition {v : xv < 0}, {v : xv ≥ 0} differs from the partition
{v : χv = −1}, {v : χv = +1} in at most O(ε2n) vertices, since each misclassified
vertex adds at least 1 to the summation∑

v

(xv − χv)
2 = ||x− χ||2 ≤ O(ε2n)

Multiplying x by a scalar does not change the partition {v : xv < 0}, {v : xv ≥ 0}, so
the error bound holds for every scalar multiple of x and hence for every eigenvector
of the largest eigenvalue of A− p+q

2
J .

It remains to understand under what conditions the spectral concentration bound (1)
holds.

Matrix Chernoff bounds imply that, for every p, q, we have

||A− EA|| ≤ O(
√

(p+ q)n log n)

and so the condition (p−q)n >>
√

(p+ q)n log n suffices for approximate reconstruc-
tion.

It is possible to prove that, if p+ q >> logn
n

then we have the stronger bound

||A− EA|| ≤ O(
√

(p+ q)n)

and, in that regime, the condition (p − q)n >>
√

(p+ q)n suffices for approximate
reconstruction.

In the regime in which p and q are O(1/n), meaning that the graph has constant
average degree, it is known that condition (1) is false with high probability.
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2 Semidefinite Programming

We will now introduce the technique of semidefinite programming. Semidefinite pro-
gramming is a general class of convex optimization problems, and it generalizes both
eigenvalue computations and linear programming. Like linear programming, it has a
theory of duality that helps reason about the optimality of solutions. Like spectral
techniques, it allows to reason about the phenomenon of the random graphs being
“concentrated” around their expectation.

For the sake of this course, it will suffice to introduce a couple of basic concepts and
results.

We say that a real symmetric matrix M is Positive Semidefinite, which we abbreviate
as PSD and write M � 0, if all the eigenvalues of M are non-negative. We will use
the partial order A � B among real symmetric matrices which holds iff A−B � 0.

It follows from the variational characterization of eigenvalues of real symmetric ma-
trices that a matrix M is PSD if and only if

∀x ∈ Rn : xTMx ≥ 0

Another useful characterization of PSD matrices is that a matrix is PSD if and only
if there are n vectors x(1), . . . , x(n) such that

∀i, j : Mi,j = 〈x(i), x(j)〉

When the above relation holds, we say that M is the Gram matrix of the vectors
x(1), . . . , x(n) and the vectors are called a Cholesky decomposition of the matrix. Note
that the vectors need not be n-dimensional, and need not be unique.

To prove that this is a characterization, we see that if M is the Gram matrix of
x(1), . . . , x(n), then the quadratic form of M is a sum of squares and hence non-
negative, meaning that M is PSD:

∀y ∈ Rn : yTMy =
∑
i,j

Mi,jyiyj =
∑
i,j

∑
k

x
(i)
k x

(j)
k yiyj =

∑
k

(∑
i

yix
(k)
i

)2

≥ 0

For the other direction, if M is PSD and if λ1, · · · , λn is the sequence of non-negative
eigenvalues of M and v(1), . . . , v(n) the corresponding sequence of orthnormal eigen-
vectors, then we can write

M =
∑
k

λkv
(k)
(
v(k)
)
)T

that is,

Mi,j =
∑
k

λkv
(k)
i v

(k)
j
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and we can verify that the collection of vectors x(1), . . . , x(n) defined as

x
(i)
k =

√
λkv

(k)
i

is a Cholesky decomposition of M , because

〈x(i), x(j)〉 =
∑
k

x
(i)
k x

(j)
k =

∑
k

λkv
(k)
i v

(k)
j = Mi,j

From these properties, we conclude that the set {M ∈ Rn×n : M � 0} of PSD
matrices is convex, because if A and B are PSD matrices and 0 ≤ λ ≤ 1 we have

∀x : xT (λA+ (1− λ)A)x = λxTAx+ (1− λ)xTBx ≥ 0

so that λA+ (1− λ)B is also PSD.

Semidefinite programming (SDP) is the class of optimization problems in which the
unknowns are the entries of a PSD matrix, and we want to optimize a linear func-
tions of such unknowns under linear constraints. A generic form of a maximization
semidefinite program is

max
∑
i,j

ci,jXi,j

s.t.∑
i,j

a
(1)
i,jXi,j ≤ b1

...∑
i,j

a
(m)
i,j Xi,j ≤ bm

X � 0

where the coefficients ci,j, a
(k)
i,j and bj are given. It is possible to define the problem

as a minimization problem, and to have equality constraints, although such variants
can be equivalently reduced to the normal form above.

Interior point algorithms for convex optimization apply to semidefinite programming,
and can find, in polynomial time, a solution that is exponentially close to an optimal
solution.

For notational convenience, we introduce the Frobenious inner product between ma-
trices, defined as

A •B :=
∑
i,j

Ai,jBi,j
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With this notation, given a matrix C of cost coefficients, and matrices A(1), . . . , A(m)

and scalars b1, . . . , bm, an SDP in maximization normal form can be written as

max C •X
s.t.

A(k) •X ≤ bk k = 1, . . . ,m

X � 0

Given the characterization of PSD matrices as Gram matrices of a collection of vec-
tors, a generic SDP can also be written as the problem in which the variables are a
collection x(1), . . . , x(n) of vectors and the optimization problem has the form

max
∑
i,j

ci,j〈x(i), x(j)〉

s.t.∑
i,j

a
(1)
i,j 〈x(i), x(j)〉 ≤ b1

...∑
i,j

a
(m)
i,j 〈x(i), x(j)〉 ≤ bm

x(i) ∈ RD i = 1, . . . , n

D > 0

In the special case D = 1 in which the vectors are 1-dimensional, semidefinite pro-
gramming becomes quadratic programming, the family of optimization problems in
which the unknowns are real variables and the cost function and the constraints
are homogeneous quadratic polynomials. Thus, semidefinite programming provides a
generic way of constructing polynomial-time solvable convex relaxations of quadratic
programming problems (the relaxation in SDP is that the dimension of the vectors
is arbitrary), whereas quadratic programming is a family of non-convex optimization
problems that do not admit polynomial time solvers (unless P=NP).

Both the max clique problem and the minimum balanced cut problem admit ex-
act formulation as quadratic programming problems, and hence admit polynomial
time solvable convex SDP relaxations. In the next few lectures, we will study the
average-case behavior of such relaxations given graphs sampled from the planted
clique distribution and the stochastic block model.
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