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Lecture 6: Spectral methods for planted clique

In which we study a spectral algorithm that finds a planted clique in a random graph.

1 Finding a Planted Clique

We will analyze the following algorithm:

• Input: graph G, desired clique size k

• Let A be the adjacency matrix of G and define M := A− 1
2
J

• Let x be an eigenvector of the largest eigenvalue of M

• Let I be the set of k vertices v that have the largest values of |xv|

• Let C be the set of vertices v ∈ V that have at least 3
4
k neighbors in I

• Return C

We will show that if k >>
√
n, for example k > 100

√
n, then with high probability

the above algorithm finds the planted clique. Here, “high probability” means one
minus an error term that goes to zero faster than the inverse of any polynomial.

2 The eigenvector of the largest eigenvalue of A−
1
2J

An important theme of this lecture is that when we construct a random object using
independent choices, then various quantities related to the object concentrate around
the average.
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Before we see what we mean by this, let us study the expectation of A, because,
whenever we have a random object, it is always helpful to start by understanding its
average.

Let us fix the set K which is the planted clique of size k in our distribution. Then
the matrix EA has zeroes on the diagonal, and the off-diagonal entries (u, v) are 1 if
u and v are both in K and 1

2
otherwise. So we can write

EA =
1

2
J +

1

2
1K1TK −D

where J is the matrix that is one everywhere, 1K is the indicator vector of K, whose
v-th coordinate is 1 if v ∈ K and is 0 otherwise, and D is a diagonal matrix such that
Dv,v is equal to 1 if v ∈ K and equal to 1

2
otherwise.

Let us ignore D for a moment. If we had the matrix 1
2
J + 1

2
1K1TK , we could subtract

1
2
J from it and we would be left with the rank-one matrix 1

2
1K1TK , whose only non-

trivial eigenvector is the indicator of K. Of course we do not have such a matrix, but
we have the matrix A whose average (up to the diagonal correction) is 1

2
J + 1

2
1K1TK .

So what happens if we pretend that A and EA are the same, and we compute the
eigenvector of the largest eigenvalue of A − 1

2
J? It turns out that we find a vector

that is close to 1K ! We will now see why.

First, we need to establish that A and EA are close to each other in operator norm.
We can think of the process of sampling the a planted clique graph G with clique K
as first picking an Erdös-Renyi random graph GER, then defining GK to be the graph
whose edges are the edges within K that are missing from GER, and finally letting G
be the graph whose edge set is the union of GER and GK . If we let A, AER and AK be,
respectively the adjacency matrices of G, GER and GK , we have A = AER+AK . The
important observation is that AK is itself the adjacency matrix of an Erdös-Renyi
random graph with edge probability 1/2, and so we have that, with high probability,

||AER − EAER|| ≤ (1 + o(1))
√
n

and
||AK − EAK || ≤ (1 + o(1))

√
|K|

which gives us the following bound.

Lemma 1 Fix a set K of size k = o(n). With high probability over the choice of a
graph G from the k-planted clique distribution conditioned on K being the clique, if
A is the adjacency matrix of G, we have

||A− EA|| ≤ (1 + o(1)) ·
√
n

where n is the number of vertices of G.
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Note that the matrix D described above satisfies ||D|| = 1 and so whenever the
conclusion of the above lemma holds we also have∥∥∥∥A− 1

2
J − 1

2
1K1TK

∥∥∥∥ ≤ ‖A− EA‖+ ‖D‖ ≤ (1 + o(1))
√
n

which means that the matrix A− 1
2
J , which we know, and the matrix 1

2
1K1TK , whose

non-trivial eigenvector encodes the set we are looking for, are very close.

Now we would like to say that if two matrices are close in spectral norm, then their
respective eigenvectors of their largest eigenvalues are also close. The Davis-Kahan
theorem says exactly that. For our purposes, it is sufficient to work with a special
case that is easier to state.

Theorem 2 (Davis and Kahan) If M is a symmetric matrix, yyT is a rank-one
symmetric matrix, and x is an eigenvector of the largest eigenvalue of M , we have

| sin(x̂y)| ≤ ||M − yyT ||
||yyT || − ||M − yyT ||

where x̂y is the angle between the vectors x and y.

That is, if the distance between M and yyT is small compared to the “size” of yyT ,
then the eigenvector of the largest eigenvalue of M is almost aligned with y.

Corollary 3 If ||(A − J/2) − 1K1TK/2|| ≤ (1 + o(1))
√
n, k > 100

√
n, and x is an

eigenvector of the largest eigenvalue of A− J/2 scaled so that ||x||2 = k, then

min{||x− 1K ||2, || − x− 1K ||2} ≤ 0.002k

for sufficiently large n.

Proof: We apply the Davis-Kahan theorem and we see that

| sin( ˆx 1K)| ≤ (1 + o(1))
√
n

k
2
− (1 + o(1))

√
n

=
1

49
+ o(1)

Now we have to reason about the distance between x and 1K . Recall that both
vectors have length-squared equal to k.

||x− 1K ||2 = ||x||2 + ||1K ||2 − 2〈x,1K〉 = 2k − 2〈x,1K〉

|| − x− 1K ||2 = 2k + 2〈x,1K〉

3



so we have
min{||x− 1K ||2, || − x− 1K ||2} = 2k − 2 · |〈x,1K〉|

We also have
〈x,1K〉 = ||x|| · ||1K || · cos( ˆx1K) = k cos( ˆx 1K)

So

|〈x,1K〉| = k| cos( ˆx 1K)| = k ·
√

1− sin2( ˆx 1K) ≥ k

√
492 − 1

492
− o(1) > 0.999 · k

for sufficiently large n. �

3 Cleaning up

The previous section analyzes what happens in the first two lines of the algorithm:
with high probability we have a vector x such that either x or −x is close to 1K . How
do we use such a vector to find K? The first observation, which analyzes the third
line of the algorithm, is that, if we define the set I to be the k vertices v for which
|xv| is largest, then the set I and the set K are almost the same.

Lemma 4 If x is a vector such that ||x||2 = |K| = k, and

{||x− 1K ||2, || − x− 1K ||2} ≤ εk

and if I is the set of k vertices v with largest |xv|, then I and K have at least k ·(1−4ε)
vertices in common.

Proof: Let us call a vertex v bad if it is in K and we have |xv| ≤ 1
2

or if it is not in
K and we have |xv| ≥ 1

2
. Let B be the set of bad vertices.

The first observation is that |B| ≤ 4ε, because each vertex in B contributes at least
1/4 both to ||x− 1K ||2 and to || − x− 1K ||2.

The second observation is that I and K must have at least k−|B| vertices in common.
To see why, consider two cases. Let t be the smallest value of |xv| among the vertices
v in I. That is, if we sorted the vertices of G in decreasing order of |xv|, then t
would be the value that we would see in the k-th position of the sorted order. If
t > 1/2, then all the vertices v 6∈ K that are included in I have |xv| > 1/2, and so are
bad vertices, which means that I contains at most |B| vertices not in K, and hence
contains at least k − |B| vertices from K. If t ≤ 1/2, then every vertex of K that
we do not include in I has |xv| ≤ 1/2, and so it is a bad vertex. This means that I
contains at least k − |B| of the k vertices of K. �
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We now understand what happens after the first three lines of our algorithm are
executed: with high probability, the set I contains at least 1− 4 · 0.002 · k = .992 · k
of the k elements of K.

In conclusion, we need to understand what happens in the fourth line. Note that, if
the above happens, then C will include all the elements of K, since all the elements
of K have at least .992 · k > 3

4
k neighbors in I. The last thing to prove is that, with

high probability, C will not contain any vertex outside of K.

We will use the following result, which, again, relates the probable value of a random
variable to the value of its average.

Theorem 5 (Chernoff bounds) If X1, . . . , Xk are independent random variables
taking value either 0 or 1, and X :=

∑k
i=1 Xi, then, for every 0 < ε < 1

P [X − EX > εk] ≤ e−2ε2k

P [X − EX < −εk] ≤ e−2ε2k

Now, let us go back to our random graph: if v 6∈ K, then the number of neighbors of v
in K is a random value of average k/2 that can be written as a sum of k independent
0/1 random variables each of average 1/2. This means that each vertex v 6∈ K has a
very low probability of having much more than k/2 neighbors in K.

Corollary 6 Fix a vertex v 6∈ K. With probability at least 1 − e.02k over the choice
of G, the vertex v has at most .6k neighbors in K.

Proof: Apply the Chernoff bound with ε = 0.1.�

Now we apply the union bound to argue that the same happens for all vertices not in
K.

Corollary 7 With probability at least 1 − (n − k) · e.02k over the choice of G, every
vertex v 6∈ K has at most .6k neighbors in K.

Proof: Consider the negation of the event that we are interested in, that is, the
event that there is a vertex v 6∈ K with more than .6k neighbors in K. This is
the OR of n − k events, each of them having probability at most e.02k, and so its
probability is at most (n− k) · e.02k. �

So, with 1− e−Ω(
√
n) probability, each vertex v 6∈ K has at most .6k neighbors in K.

But the set I contains a subset of K plus at most .008 other vertices, so each vertex
v 6∈ K has at most .608k neighbors in I, which is less than 3/4. This means that C
will (with high probability) not include any vertex v 6∈ K.
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