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Lecture 5: More on Random Matrices

In which we study the operator norm of Wigner matrices.

Let G be an undirected random graph sampled from the Erdos-Renyi Gn,% distribu-

tion, meaning that G has n vertices, each unordered pair {u, v} has probability 1/2
of being an edge of GG, and the choices for different pairs are mutually independent.

Last time we showed that the Matrix Chernoff Bounds imply that with high prob-
ability ||[A — EA|| < 2y/nlogn. Today we discuss two other techniques to prove
concentration bounds for random matrices, and we illustrate them with an esti-
mate of ||[A — EA||. It will be more convenient to work with the Wigner matrix
W =2.(A—EA), which is a random symmetric matrix with zero diagonal and +1
off-diagonal entries.

1 Reasoning about e-nets

The operator norm of Hermitian matrices can be characterized as the continuous
optimization problem

|M|| = max |27 Mz|

z:||z||=1

and our first idea is to introduce a combinatorial problem that approximates it.

Call S the unit sphere in R", and call a set N C S an e-net if for every element z € S
there exists an element y € N such that ||z —y|| <e.

The existence of relatively small e-nets of S can be argued by the following argument:
start with an empty set N = (), then repeat the operation of adding to N an element
of § that is at distance at least e from all the current elements of N, until such
operation is not possible any more. When the above procedure stops, we have an
e-net of S, because the stopping condition of the procedure is precisely the condition
of N being an e-net of S. Now, draw a ball of radius €/2 around each point of N:
these balls are all disjoint, and they are all contained in the ball of radius 1 + €/2



around the origin, so the number of steps that the above procedure can take is at
most the ratio between the volume of a ball of radius 1+ ¢/2 and a ball of radius €/2
in R”, and this ratio is at most (¢/€)™, for an absolute constant ¢. In particular, we
have

Lemma 1 There is an 1/4-net N of the unit sphere in R™ such that |N| < 20,
We can use an e-net to provide a combinatorial approximation of the operator norm.

Lemma 2 If N is an 1/4-net of the unit sphere, then

M| <2 T
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PROOF: Let x be a unit vector such that |7 Mz| = ||[M|| and let y be a unit vector
in N such that ||z — y|| < 1/4, then

M| = 2" M|
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The optimum of the combinatorial problem max,ex |y Wy| can be bounded using a
Chernoff bound and a union bound. We first prove the Chernoff bound that we are
going to use.

Lemma 3 Let rq,...,r, be mutually independent +1 Rademacher random variables
and let ay, ..., a, be arbitrary real coefficients. Then, for everyt > 0 we have
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Proor: We are going to use the inequality
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which is true for every x and that is provable by looking at the difference between
the Taylor series on the right and the Taylor series on the left, and seeing that the
difference is a sum of even powers, and hence non-negative.

First, we have the inequalities
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which hold for all ¢ > 0 (we will optimize ¢ later). Then we compute
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Now we choose ¢ so that
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and we have the desired statement. U

Coming back to our goal of estimating the operator norm of a Wigner matrix W with
Rademacher entries, if we fix any unit vector y we have

y' Wy =2 Z Wi jviy;

i<j
where W;; are a collection of () mutually independent Rademacher random vari-
ables, and the coefficients y;y; satisy
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and so
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Since the distribution of W is the same as the distribution of —W, we have
Plly"Wy| > #] < 2¢7/*
If N is a set of unit vectors, a union bound gives us
P[EyeN: y'Wy>t] <|N|.2. /4
If N is a 1/4-net of the unit sphere containing 29 elements,

PW|| > <P[3ye N:|[yTWy| > /2] <200 .
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and so there is an absolute constant C' such that if we choose t = C - y/n the above
probability is exponentially small in n.

Thus we have proved

Theorem 4 There exists an absolute constant C' such that the adjacency matriz A
of a graph G sampled from Gn,% satisfies, with probability 1 — 2~

|A—EA| < Cvn

2 The trace method

It is known that the operator norm of a Wigner matrix is concentrated around (2 +
0(1)) - v/n. The technique that yields the above tight result is the trace method. The
idea of the trace method is that, if M is a real symmetric matrix then for every integer

k we have
[M]** < Te(M**) < n- || M]]*

because, if \1,..., A, are the eigenvalues of M, then
T<M2k Z)\Qk Z’)\ |2k

and the above sum includes at least one term of value ||M|[*! and all the n terms are
at most || M||?*. Note that, if k >> logn, (Tr(M?*))1/?* is a very good approximation
of || M]].

If M is a random matrix, we also have

E Tr(M?)
12k

which is small if we take ¢ to be a bit larger than (E Tr(M?*))!/2k

P[||M]| > ¢] < P[Tr(M?*) > 2] <

Our next goal will be to understand E Tr(W?2*), where W is a Wigner matrix.
We have
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we can characterize the terms in the summation in the following way

e If the sequence of unordered pairs {iy,ia}, {2,493}, , {iak—1, tok }, {Gok, 91} is
such that every unordered pair occurs in the sequence an even number of times,
then

E Wil,i2m27i3 T m%fﬂ%m%il =1



e If the sequence of unordered pairs {iy,is}, {2,493}, -, {iog_1, tok }, {i2k, 91} is
such that at least one unordered pair occurs in the sequence an odd number of
times, then

E m1,i2m27i3 T I/Vizk—ﬂzkmzkh =0
This means that E Tr(W?) is equal to the number of sequence iy, . .. iy € {1,...,n}*
such that the sequence of unordered pairs {iy,i2}, {i2, 43}, -, {iok_1,%ox }, {2k, 41} has

at least one unordered pair occurring an odd number of times.

This number can be shown to be (2+0(1))?*-n!*#/2 via fairly involved combinatorial
arguments, and this gives the tight bound on the operator norm of Wigner matrices.

To give a sense of how one approaches such combinatorial problems, we will prove the
weaker bound 221 . p!**. (k4 1)*=1 which could be used to prove that the operator
norm of Wigner matrices is, with high probability, O(y/nlogn).

To prove the weaker bound, consider how much information we need to specify a
sequence i ...14g, with the specified property. Let us think of V := {1,...,n} as
the vertex set of an undirected graph, and as iq,...,i9; as a sequence of vertices,
with repetitions, that are encountered in the closed walk iy — 19 — « -+ — 1o, — 11,
which traverses the edges {i1,i2},..., {io,41}. Our condition is that every edge is
traversed an even number of times, which means that at most k distinct edges are
traversed a positive number of times. The vertices encountered in the closed walk
form a connected graph together with the edges encountered in the closed walk, which
means that the sequence 71, is, ..., 179, contains at most k + 1 distinct vertices.

This suffices to upper bound the number of sequences as being at most n**1- (k+1)2,
because there are at most n**! ways of choosing k + 1 vertices and then at most
(k + 1) ways of creating a sequences of length 2k out of them. We will slightly
improve this bound with a more careful accounting.

If we want to produce an bit-enconding of a sequence i ...149, with the required
property, we can first use 2k bits to specify which position j corresponds to a vertex
t; encountered for the first time in the walk and which position j corresponds to a
vertex ¢; that had already been encountered before. Then we can list the distinct
vertices occurring in the sequence, in the order in which they first occur, which takes
¢ - log, n bits if there are ¢ distinct vertices, and finally, for the remaining 2k — ¢
positions, we have to specify which of the ¢ distinct vertices occurs there. In total we
have
2k + 0 -logyn + (2k — ¢) - log, £

bits. Assuming k << n, we have ¢ << n, and the above expression is larger for larger
¢ and is at most the value taken for the worst-case ¢ = k + 1

2k + (k+1)logon+ (k—1) -log, k+ 1

The number of distinct sequences that can be represented injectively using at most



T bits is at most 277! and so the number of sequences with the property is at most
22k:+1 . nk-‘rl . (k + 1)k—1 ]



	Reasoning about -nets
	The trace method

