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Lecture 5: More on Random Matrices

In which we study the operator norm of Wigner matrices.

Let G be an undirected random graph sampled from the Erdös-Renyi Gn, 1
2

distribu-

tion, meaning that G has n vertices, each unordered pair {u, v} has probability 1/2
of being an edge of G, and the choices for different pairs are mutually independent.

Last time we showed that the Matrix Chernoff Bounds imply that with high prob-
ability ||A − EA|| ≤ 2

√
n log n. Today we discuss two other techniques to prove

concentration bounds for random matrices, and we illustrate them with an esti-
mate of ||A − EA||. It will be more convenient to work with the Wigner matrix
W = 2 · (A− EA), which is a random symmetric matrix with zero diagonal and ±1
off-diagonal entries.

1 Reasoning about ε-nets

The operator norm of Hermitian matrices can be characterized as the continuous
optimization problem

||M || = max
x:||x||=1

|xTMx|

and our first idea is to introduce a combinatorial problem that approximates it.

Call S the unit sphere in Rn, and call a set N ⊆ S an ε-net if for every element x ∈ S
there exists an element y ∈ N such that ||x− y|| ≤ ε.

The existence of relatively small ε-nets of S can be argued by the following argument:
start with an empty set N = ∅, then repeat the operation of adding to N an element
of S that is at distance at least ε from all the current elements of N , until such
operation is not possible any more. When the above procedure stops, we have an
ε-net of S, because the stopping condition of the procedure is precisely the condition
of N being an ε-net of S. Now, draw a ball of radius ε/2 around each point of N :
these balls are all disjoint, and they are all contained in the ball of radius 1 + ε/2

1



around the origin, so the number of steps that the above procedure can take is at
most the ratio between the volume of a ball of radius 1 + ε/2 and a ball of radius ε/2
in Rn, and this ratio is at most (c/ε)n, for an absolute constant c. In particular, we
have

Lemma 1 There is an 1/4-net N of the unit sphere in Rn such that |N | ≤ 2O(n).

We can use an ε-net to provide a combinatorial approximation of the operator norm.

Lemma 2 If N is an 1/4-net of the unit sphere, then

||M || ≤ 2 max
y∈N
|yTMy|

Proof: Let x be a unit vector such that |xTMx| = ||M || and let y be a unit vector
in N such that ||x− y|| ≤ 1/4, then

||M || = |xTMx|
≤ |(x− y)TMx|+ |yTMx|
≤ |(x− y)TMx|+ |ytM(x− y)|+ |yTMy|
≤ ||x− y|| · ||M || · ||x||+ ||y|| · ||M || · ||x− y||+ |yTMy|

≤ 1

2
||M ||+ |yTMy|

�

The optimum of the combinatorial problem maxy∈N |yTWy| can be bounded using a
Chernoff bound and a union bound. We first prove the Chernoff bound that we are
going to use.

Lemma 3 Let r1, . . . , rn be mutually independent ±1 Rademacher random variables
and let a1, . . . , an be arbitrary real coefficients. Then, for every t > 0 we have

P

[∑
i

riai ≥ t

]
≤ e

− t2

2
∑

i a
2
i

Proof: We are going to use the inequality

1

2
ex +

1

2
e−x ≤ e

x2

2
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which is true for every x and that is provable by looking at the difference between
the Taylor series on the right and the Taylor series on the left, and seeing that the
difference is a sum of even powers, and hence non-negative.

First, we have the inequalities

P

[∑
i

riai ≥ t

]
= P

[
ec·

∑
i riai ≥ ect

]
≤ E ec·

∑
i riai

ect

which hold for all c > 0 (we will optimize c later). Then we compute

E ec·
∑

i riai =
∏
i

E ecriai =
∏
i

(
1

2
ecai +

1

2
e−cai

)
≤
∏
i

ec
2a2i /2 = ec

2
∑

i a
2
i /2

Now we choose c so that

c2
∑
i

a2
i

2
=
ct

2

and we have the desired statement. �

Coming back to our goal of estimating the operator norm of a Wigner matrix W with
Rademacher entries, if we fix any unit vector y we have

yTWy = 2
∑
i<j

Wi,jyiyj

where Wi,j are a collection of
(
n
2

)
mutually independent Rademacher random vari-

ables, and the coefficients yiyj satisy

∑
i<j

(yiyj)
2 ≤ 1

2

∑
i,j

y2
i y

2
j =

1

2

(∑
i

y2
i

)2

=
1

2

and so

P[yTWy > t] = P

[∑
i<j

Wi,jyiyj ≥
t

2

]
≤ e−

(t/2)2

2·1/2 = e−t
2/4

Since the distribution of W is the same as the distribution of −W , we have

P [|yTWy| > t] ≤ 2e−t
2/4

If N is a set of unit vectors, a union bound gives us

P
[
∃y ∈ N : yTWy > t

]
≤ |N | · 2 · e−t2/4

If N is a 1/4-net of the unit sphere containing 2O(n) elements,

P[||W || ≥ t] ≤ P
[
∃y ∈ N : |yTWy| ≥ t/2

]
≤ 2O(n) · e−Ω(t2)
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and so there is an absolute constant C such that if we choose t = C ·
√
n the above

probability is exponentially small in n.

Thus we have proved

Theorem 4 There exists an absolute constant C such that the adjacency matrix A
of a graph G sampled from Gn, 1

2
satisfies, with probability 1− 2−Ω(n),

||A− EA|| ≤ C
√
n

2 The trace method

It is known that the operator norm of a Wigner matrix is concentrated around (2 +
o(1)) ·

√
n. The technique that yields the above tight result is the trace method. The

idea of the trace method is that, if M is a real symmetric matrix then for every integer
k we have

||M ||2k ≤ Tr(M2k) ≤ n · ||M ||2k

because, if λ1, . . . , λn are the eigenvalues of M , then

Tr(M2k) =
∑
i

λ2k
i =

∑
i

|λi|2k

and the above sum includes at least one term of value ||M ||2k and all the n terms are
at most ||M ||2k. Note that, if k >> log n, (Tr(M2k))1/2k is a very good approximation
of ||M ||.
If M is a random matrix, we also have

P[||M || ≥ t] ≤ P[Tr(M2k) ≥ t2k] ≤ ETr(M2k)

t2k

which is small if we take t to be a bit larger than (ETr(M2k))1/2k

Our next goal will be to understand ETr(W 2k), where W is a Wigner matrix.

We have

ETr(W 2k) = E
∑
i

(W 2k)i,i =
∑

i1,i2,...,i2k

EWi1,i2Wi2,i3 · · ·Wi2k−1i2kWi2ki1

we can characterize the terms in the summation in the following way

• If the sequence of unordered pairs {i1, i2}, {i2, i3}, · · · , {i2k−1, i2k}, {i2k, i1} is
such that every unordered pair occurs in the sequence an even number of times,
then

EWi1,i2Wi2,i3 · · ·Wi2k−1i2kWi2ki1 = 1
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• If the sequence of unordered pairs {i1, i2}, {i2, i3}, · · · , {i2k−1, i2k}, {i2k, i1} is
such that at least one unordered pair occurs in the sequence an odd number of
times, then

EWi1,i2Wi2,i3 · · ·Wi2k−1i2kWi2ki1 = 0

This means that ETr(W 2k) is equal to the number of sequence i1, . . . , i2k ∈ {1, . . . , n}2k

such that the sequence of unordered pairs {i1, i2}, {i2, i3}, · · · , {i2k−1, i2k}, {i2k, i1} has
at least one unordered pair occurring an odd number of times.

This number can be shown to be (2+o(1))2k ·n1+k/2, via fairly involved combinatorial
arguments, and this gives the tight bound on the operator norm of Wigner matrices.

To give a sense of how one approaches such combinatorial problems, we will prove the
weaker bound 22k+1 ·n1+k · (k+ 1)k−1, which could be used to prove that the operator
norm of Wigner matrices is, with high probability, O(

√
n log n).

To prove the weaker bound, consider how much information we need to specify a
sequence i1 . . . i2k with the specified property. Let us think of V := {1, . . . , n} as
the vertex set of an undirected graph, and as i1, . . . , i2k as a sequence of vertices,
with repetitions, that are encountered in the closed walk i1 → i2 → · · · → i2k → i1,
which traverses the edges {i1, i2}, . . . , {i2k, i1}. Our condition is that every edge is
traversed an even number of times, which means that at most k distinct edges are
traversed a positive number of times. The vertices encountered in the closed walk
form a connected graph together with the edges encountered in the closed walk, which
means that the sequence i1, i2, . . . , i2k contains at most k + 1 distinct vertices.

This suffices to upper bound the number of sequences as being at most nk+1 ·(k+1)2k,
because there are at most nk+1 ways of choosing k + 1 vertices and then at most
(k + 1)2k ways of creating a sequences of length 2k out of them. We will slightly
improve this bound with a more careful accounting.

If we want to produce an bit-enconding of a sequence i1 . . . i2k with the required
property, we can first use 2k bits to specify which position j corresponds to a vertex
ij encountered for the first time in the walk and which position j corresponds to a
vertex ij that had already been encountered before. Then we can list the distinct
vertices occurring in the sequence, in the order in which they first occur, which takes
` · log2 n bits if there are ` distinct vertices, and finally, for the remaining 2k − `
positions, we have to specify which of the ` distinct vertices occurs there. In total we
have

2k + ` · log2 n+ (2k − `) · log2 `

bits. Assuming k << n, we have ` << n, and the above expression is larger for larger
` and is at most the value taken for the worst-case ` = k + 1

2k + (k + 1) log2 n+ (k − 1) · log2 k + 1

The number of distinct sequences that can be represented injectively using at most
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T bits is at most 2T+1 and so the number of sequences with the property is at most
22k+1 · nk+1 · (k + 1)k−1 .
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