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Lecture 3: Cheeger Inequality Continued

In which we finish the proof of Cheeger’s inequalities and we discuss some generaliza-
tions.

1 Completing the Proof Cheeger’s Inequality

It remains to prove the following statement.

Lemma 1 Let y ∈ RV
≥0 be a vector with non-negative entries. Then there is a 0 <

t ≤ maxv{yv} such that

φ({v : yv ≥ t}) ≤
√

2RL(y)

We will provide a probabilistic proof. Without loss of generality (multiplication by a
scalar does not affect the Rayleigh quotient of a vector) we may assume that maxv yv =
1. We consider the probabilistic process in which we pick t > 0 in such a way that t2

is uniformly distributed in [0, 1] and then define the non-empty set St := {v : yv ≥ t}.
We claim that

EE(St, V − St)

E d|St|
≤
√

2RL(y) (1)

Notice that Lemma 1 follows from such a claim, because of the following useful fact.

Fact 2 Let X and Y be random variables such that P[Y > 0] = 1. Then

P
[
X

Y
≤ EX

EY

]
> 0
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Proof: Call r := EX
EY

. Then, using linearity of expectation, we have EX − rY = 0,
from which it follows P[X− rY ≤ 0] > 0, but, whenever Y > 0, which we assumed to
happen with probability 1, the conditions X − rY ≤ 0 and X

Y
≤ r are equivalent. �

It remains to prove (1).

To bound the denominator, we see that

E d|St| = d ·
∑
v∈V

P[v ∈ St] = d
∑
v

y2v

because

P[v ∈ St] = P[yv ≥ t] = P[y2v ≥ t2] = y2v

To bound the numerator, we say that an edge is cut by St if one endpoint is in St

and another is not. We have

EE(St, V − St) =
∑
{u,v}∈E

P[{u, v} is cut]

=
∑
{u,v}∈E

|y2v − y2u| =
∑
{u,v}∈E

|yv − yu| · (yu + yv)

Applying Cauchy-Schwarz, we have

EE(St, V − St) ≤
√ ∑
{u,v}∈E

(yv − yu)2 ·
√ ∑
{u,v}∈E

(yv + yu)2

and applying Cauchy-Schwarz again (in the form (a+ b)2 ≤ 2a2 + 2b2) we get∑
{u,v}∈E

(yv + yu)2 ≤
∑
{u,v}∈E

2yv + 2y2u = 2d
∑
v

y2v

Putting everything together gives

EE(St, V − St)

E d|St|
≤

√
2

∑
{u,v}∈E(yv − yu)2

d
∑

v y
2
v

which is (1).

2 Cheeger-type Inequalities for λn

Let G = (V,E) be an undirected graph (not necessarily regular), D its diagonal
matrix of degrees, A its adjacency matrix, L = I − D−1/2AD−1/2 its normalized
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Laplacian matrix, and 0 = λ1 ≤ · · · ≤ λn ≤ 2 be the eigenvalues of L, counted with
multiplicities and listed in non-decreasing order.

In Handout 2, we proved that λk = 0 if and only if G has at least k connected
component and λn = 2 if and only if there is a connected component of G (possibly,
all of G) that is bipartite.

A special case of the former fact is that λ2 = 0 if and only if the graph is disconnected,
and the Cheeger inequalities give a “robust” version of this fact, showing that λ2 can
be small if and only if the expansion of the graph is small. In these notes we will see
a robust version of the latter fact; we will identify a combinatorial parameter that
is zero if and only if the graph has a bipartite connected component, and it is small
if and only if the graph is “close” (in an appropriate sense) to having a bipartite
connected components, and we will show that this parameter is small if and only if
2− λn is small.

Recall that

2− λn = min
x∈Rn−{0}

∑
{u,v}∈E(xu + xv)

2∑
v∈V dvx

2
v

We will study the following combinatorial problem, which formalizes the task of find-
ing an “almost bipartite connected component:” we are looking for a non-empty
subset of vertices S ⊆ V (we allow S = V ) and a bipartition (A,B) of S such that
there is a small number of “violating edges” compared to the number of edges incident
on S, where an edge {u, v} is violating if it is in the cut (S, V − S), if it has both
endpoints in A, or if it has both endpoints in B. (Note that if there are no violating
edges, then S is a bipartite connected component of G.)

It will be convenient to package the information about A,B, S as a vector y ∈
{−1, 0, 1}n, where the non-zero coordinates correspond to S, and the partition of
S is given by the positive versus negative coordinates. We define the “bipartiteness
ratio” of y as

β(y) :=

∑
{u,v}∈E |yu + yv|∑

v∈V dv|yv|

Note that in the numerator we have the number of violating edges, with edges con-
tained in A or in B counted with a weight of 2, and edges from S to V − S counted
with a weight of 1. In the denominator we have the sum of the degrees of the vertices
of S (also called the volume of S, and written vol(S)) which is, up to a factor of 2,
the number of edges incident on S.

(Other definitions would have been reasonable, for example in the numerator we
could just count the number of violating edges without weights, or we could have the
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expression
∑
{u,v}∈E(yu + yv)

2. Those choices would give similar bounds to the ones

we will prove, with different multiplicative constants.)

We define the bipartiteness ratio of G as

β(G) = min
y∈{−1,0,1}n−{0}

β(y)

We will prove the following analog of Cheeger’s inequalities:

2− λn
2
≤ β(G) ≤

√
2 · (2− λn)

The first inequality is the easy direction

2− λn = min
x∈Rn−{0}

∑
{u,v}∈E(xu + xv)

2∑
v∈V dvx

2
v

≤ min
y∈{−1,0,1}n−{0}

∑
{u,v}∈E |yu + yv|2∑

v∈V dv|yv|2

≤ min
y∈{−1,0,1}n−{0}

∑
{u,v}∈E 2 · |yu + yv|∑

v∈V dv|yv|

The other direction follows by applying the following lemma to the case in which x
is the eigenvector of λn.

Lemma 3 (Main) For every x ∈ Rn−{0} there is a threshold t, 0 < t ≤ maxv |xv|,
such that, if we define y(t) ∈ {−1, 0, 1}n as

y(t)v =


−1 if xv ≤ −t
0 if − t < xv < t
1 if xv ≥ t

we have

β(y(t)) ≤

√
2 ·
∑
{u,v}∈E(xu + xv)2∑

v∈V dvx
2
v

Note that the Lemma is giving the analysis of an algorithm that is the “bipartite ana-
log” of Fiedler’s algorithm. We sort vertices according to |xv|, and then we consider
all sets S which are suffixes of the sorted order and cut S into (A,B) according to
sign. We pick the solution, among those, with smallest bipartiteness ratio. Given x,
such a solution can be found in time O(|E| + |V | log |V |) as in the case of Fiedler’s
algorithm.
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2.1 Proof of Main Lemma

We will assume without loss of generality that maxv |xv| = 1. (Scaling x by a mul-
tiplicative constant does not change the Rayleigh quotient and does not change the
set of y that can be obtained from x over the possible choices of thresholds.)

Consider the following probabilistic experiment: we pick t at random in [0, 1] such that
t2 is uniformly distributed in [0, 1], and we define the vector y(t) as in the statement
of the lemma. We claim that

E
∑
{u,v}∈E |y

(t)
u + y

(t)
v |

E
∑

v∈V dv|y
(t)
v |

≤

√
2 ·
∑
{u,v}∈E(xu + xv)2∑

v∈V dvx
2
v

(2)

and we note that the Main Lemma follows from the above claim and from the fact,
which we have used before, that if X and Y are random variables such that P[Y >
0] = 1, then there is a positive probability that X

Y
≤ EX

EY
.

We immediately see that

E
∑
v∈V

dv|y(t)v | =
∑
v

dv P[ |xv| ≥ t ] =
∑
v

dvx
2
v

To analyze the numerator, we distinguish two cases

1. If xu and xv have the same sign, and, let’s say, x2u ≤ x2v then there is a probability

x2u that both y
(t)
u and y

(t)
v are non-zero (and have the same sign), meaning that

|y(t)u + y
(t)
v | = 2; and there is an additional probability x2v − x2u that y

(t)
u = 0 and

y
(t)
v = ±1, so that |y(t)u + y

(t)
v | = 1. Overall we have

E |y(t)u + y(t)v | = 2x2u + x2v − x2u = x2u + x2v

since the last expression is symmetric with respect to u and v, the equation

E |y(t)u + y(t)v | = x2u + x2v

holds also if x2u ≥ x2v;

2. If xu and xv have opposite signs, and, let’s say, x2u ≤ x2v, there is probability

x2v−x2u that y
(t)
u = 0 and y

(t)
v = ±1, in which case |y(t)u +y

(t)
v | = 1, and otherwise

we have |y(t)u + y
(t)
v | = 0. If x2u ≥ x2v, then |y(t)u + y

(t)
v | equals 1 with probability

x2u − x2v and it equals zero otherwise. In either case, we have

E |y(t)u + y(t)v | = |x2u − x2v|
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In both cases, the inequality

E |y(t)u + y(t)v | ≤ |xu + xv| · (|xu|+ |xv|)

is satisfied.

Applying Cauchy-Schwarz as in the proof of Cheeger’s inequalities we have

E
∑
{u,v}∈E

|y(t)u + y(t)v | ≤
∑
{u,v}∈E

|xu + xv| · (|xu|+ |xv|)

≤
√ ∑
{u,v}∈E

(xu + xv)2 ·
√ ∑
{u,v}∈E

(|xu|+ |xv|)2

and ∑
{u,v}∈E

(|xu|+ |xv|)2 ≤
∑
{u,v}∈E

2x2u + x2v = 2
∑
v

dvx
2
v

and, combining all the bounds, we get (2).
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