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Lecture 2: Cheeger Inequality

In which we generalize the notion of normalized Laplacian to irregular graphs, we
extend the basic spectral graph theory results from last lecture to irregular graphs, and
we prove the easy direction of Cheeger’s inequalities.

1 Irregular Graphs

Let G = (V,E) be an undirected graph, not necessarily regular. We will assume that
every vertex has non-zero degree. We would like to define a normalized Laplacian
matrix associated to G so that the properties we proved last time are true: that the
multiplicity of 0 as an eigenvalue is equal to the number of connected components of
G, that the largest eigenvalue is at most 2, and that it is 2 if and only if (a connected
component of) the graph is bipartite.

In order to have a matrix such that zero is the smallest eigenvalue, and such that
multiplicity of zero is the number of connected component, we want a matrix such
that the numerator of the Rayleigh quotient is (a multiple of)

∑
{u,v}∈E

(xu − xv)2

and the matrix M such that xTMx is the above expression is the matrix M = D−A,
where D is the diagonal matrix such that Dv,v = dv, the degree of v. The matrix
D−A is called the Laplacian matrix of G. Note that there is no fixed constant upper
bound to the largest eigenvalue of D − A; for example, if G is a d-regular bipartite
graph, the largest eigenvalue is 2d, as proved in the last lecture.

Some calculations shows that the right analog of the normalization that we did in the
regular case (in which we divided by the degree d) would be to have a matrix whose
Rayleigh quotient is∑

{u,v}∈E(xu − xv)2∑
v dvx

2
v

= 2−
∑
{u,v}∈E(xu + xv)

2∑
v dvx

2
v

(1)
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and it’s clear that the above expression is at most 2 for every x, and it is possible to
find an x for which the above expression is 2 if and only if G has a bipartite connected
component.

Unfortunately, there is no matrix whose Rayleigh quotient equals (1), because the
denominator of a Rayleigh quotient is, by definition,

∑
v x

2
v regardless of the matrix.

One way to work around this problem would be to give a more general form of
the variational characterization of eigenvalues, in which we have an arbitrary inner
product 〈·, ·〉, and the Rayleigh quotient is defined as 〈x,Mx〉

〈x,x〉 .

Here we will proceed in a way that is essentially equivalent, but without introducing
this additional definitional framework.

The point is that, if we look at the Rayleigh quotient of the vector D1/2x, where
D1/2 is the diagonal matrix such that D

1/2
v,v =

√
dv, then the denominator will indeed

be xTDx =
∑

v dvx
2
v, and that we can find a matrix L such that the numerator of

the Rayleigh quotient of D1/2x is xTD1/2LD1/2x =
∑
{u,v}∈E(xu − xv)2, so that the

Rayleigh quotient RL(D1/2x) is indeed the expression in (1).

This matrix L is called the normalized Laplacian of G and, by the above observation,
it has to be L = D−1/2(D − A)D−1/2 = I −D−1/2AD−1/2. Note that, in a d-regular
graph, we get L = I − 1

d
A, consistent with our definition from the last lecture.

Now the point is that the mapping x→ D1/2x is linear and bijective, so it maps the
set of all possible vectors to the set of all possible vectors, and it maps a k-dimensional
space to a (possibly different) k-dimensional space.

If we let λ1 ≤ · · · ≤ λn be the eigenvalues of L = I − D−1/2AD−1/2, counting
repetitions, the variational characterization gives us

λ1 = min
x 6=0

RL(x) = min
x 6=0

RL(D1/2x) = min
x6=0

∑
{u,v}∈E(xu − xv)2∑

v dvx
2
v

and
λk = min

X k−dimensional
max

x∈X−{0}
RL(x)

= min
X k−dimensional

max
x∈X−{0}

RL(D1/2x)

= min
X k−dimensional

max
x∈X−{0}

∑
{u,v}∈E(xu − xv)2∑

v dvx
2
v

from which we have that λ1 = 0 and that the multiplicity of zero is equal to the
number of connected components.

We also have

λn = max
x 6=0

RL(x) = max
x 6=0

RL(D1/2x)
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= 2−min
x 6=0

∑
{u,v}∈E(xu + xv)

2∑
v dvx

2
v

from which we see that λn ≤ 2 and that λn = 2 if and only if one of the connected
components of G is bipartite.

2 Edge Expansion, Fiedler’s Algorithm and Cheeger’s

Inequalities

We will now return, for simplicity, to the regular case.

If G = (V,E) is an undirected d-regular graph, and S ⊆ V is a set of vertices, we call
the quantity

φ(S) :=
E(S, V − S)

d|S|
the edge expansion of S. The quantity φ(S) is the average fraction of neighbors
outside of S for a random element of S, and it compares the actual number of edges
crossing the cut (S, V − S) with the trivial upper bound d|S|.
We define the expansion of a cut (S, V − S) as

φ(S, V − S) := max {φ(S), φ(V − S)} =
E(S, V − S)

d ·min{|S|, |V − S|}

The edge expansion of the graph G is defined as

φ(G) := min
S
φ(S, V − S) = min

S:1≤|S|≤ |V |
2

φ(S)

(Note: it is common in the literature to use the notation φ(S) to refer to the quantity
that we call φ(S, V − S).)

Finding cuts of small expansion is a problem with several applications. It is an open
question if there is a polynomial-time approximation with a constant-factor approx-
imation ratio; a positive answer would refute the “small-set expansion conjecture”
which is closely related to the unique games conjecture.

The following algorithm was proposed by Fiedler, and it works well in practice when
x is the eigenvector of λ2.

• Input: graph G = (V,E), vector x ∈ RV

– Sort the vertices according the values xv, and let v1, . . . , vn be the sorted
order
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– Find a k that minimizes φ({v1, . . . , vk}, {vk+1, . . . , vn}), and output such a
cut

Note that Fiedler’s algorithm can be implemented in time O(|E|+|V | log |V |), because
it takes time O(|V | log |V |) to sort the vertices, and the cut of minimal expansion that
respects the sorted order can be found in time O(E). (To see that this is the case,
consider that, in order to find such a cut, we just need to compute the numbers
ek := E({v1, . . . , vk}, {vk+1, . . . , vn}) for each k = 1, . . . , n − 1. We see that e1 is
equal to the degree of v1, and that, given ek−1, the value of ek can be computed by
just adding to ek−1 the number of neighbors of vk in {vk+1, . . . , vn}, and subtracting
the number of neighbors of vk in {v1, . . . , vk}, on operation that can be done in time
O(dvk). Thus the total running time is of the order of

∑
v dv, that is, O(|E|).)

We will prove the following result

Theorem 1 (Cheeger’s Inequalities) Let G be an undirected regular graph and
λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of the normalized Laplacian, with repetitions,
then

λ2
2
≤ φ(G) ≤

√
2λ2

Furthermore, if (S, V −S) is the cut found by Fiedler’s algorithm given the eigenvector
of λ2, then

φ(S, V − S) ≤
√

2λ2

Note that, from the furthermore part of the Theorem, it follows that, if (S, V − S) is
the cut found by Fiedler’s algorithm given an eigenvector of λ2, we have

φ(S, V − S) ≤ 2
√
φ(G)

which is a worst-case guarantee of the quality of the solution found by the algorithm.

3 Proof that λ2
2 ≤ φ(G)

Let S be a set of vertices such that φ(S, V − S) = φ(G). Recall that for every set
S, we have that expansion of S is the same as the Rayleigh quotient of the indicator
vector 1S. (The indicator vector of a set S is the 0/1 vector 1S whose v-th coordinate
is 1 if and only if v ∈ S.) So we have

RL(1S) ≤ φ(G)

RL(1V−S) ≤ φ(G)
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also recall that, from the variational characterization of eigenvalues, we have

λ2 = min
X 2−dimensional

max
x∈X−{0}

RL(x)

We will prove the inequality λ2 ≤ 2φ(G) by showing that all the vectors in the 2-
dimensional space X of linear combinations of the orthogonal vectors 1S,1V−S have
Rayleigh quotient at most 2φ(G). This is a consequence of the following useful fact.

Lemma 2 Let x and y be two orthogonal vectors, and let M be a positive semidefinite
matrix. Then

RM(x + y) ≤ 2 ·max{RM(x), RM(y)}

Proof: Let 0 ≤ λ1 ≤ · · ·λn be the eigenvalues of M and v1, . . . ,vn be a correspond-
ing basis of eigenvectors. Let us write x =

∑
i aivi and y =

∑
i bivi.

The Rayleigh quotient of x + y is∑
i λi(ai + bi)

2

||x + y||2
≤

∑
i λi2(a2i + b2i )

||x||2 + ||y||2

=
2RM(x) · ||x||2 + 2RM(y) · ||y||2

||x||2 + ||y||2
≤ 2 max{RM(x), RM(y)}

In the first inequality, we used orthogonality of x and y to derive ||x+y||2 = ||x||2 +
||y||2 and we used the Cauchy-Schwarz inequality (a+ b)2 ≤ 2a2 + 2b2. �

4 First Part of the Analysis of Fiedler’s Algorithm

The vector 1 = (1, . . . , 1) is an eigenvector for 0, which is the smallest eigenvalue
of the normalized Laplacian of G, and so, from the variational characterization of
eigenvalues, we have that

λ2 = min
x⊥1

∑
{u,v}∈E(xu − xv)2

d
∑

v x
2
v

and that any eigenvector x of λ2 is a minimizer of the above expression. We will prove
that φ(G) ≤

√
2λ2 and that the Furthermore part of Theorem 1 is true by showing

the following stronger result:

Lemma 3 Let x be a vector orthogonal to 1 and let (S, V − S) be the cut found by
Fiedler’s algorithm given x. Then

φ(S, V − S) ≤
√

2RL(x)
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This stronger form is useful, because often one runs Fiedler’s algorithm on an approx-
imate eigenvector, and Lemma 3 shows that one gets a guarantee on the quality of
the resulting cut that does not require x to be an eigenvector, as long as its Rayleigh
quotient is small.

We divide the proof of Lemma 3 into two parts: we analyze the performance of the
algorithm given a vector x that, instead of being orthogonal to 1, has the property
of having non-negative entries and at most |V |/2 non-zero entries, and we show that
analyzing the performance of the algorithm on vectors of the former type reduces to
analyzing the performance on vectors of the latter type.

Lemma 4 Let y ∈ RV
≥0 be a vector with non-negative entries. Then there is a 0 <

t ≤ maxv{yv} such that

φ({v : yv ≥ t}) ≤
√

2RL(y)

Lemma 5 Let x ∈ RV be orthogonal to 1. Then there is a vector y ∈ RV
≥0 with at

most |V |/2 non-zero entries such that

RL(y) ≤ RL(x)

Furthermore, for every 0 < t ≤ maxv{yv}, the cut ({v : yv ≥ t}, {v : yv < t}) is one
of the cuts considered by Fiedler’s algorithm on input x.

Let us quickly see how to prove Lemma 3 given Lemma 4 and Lemma 5. Let x be a
vector orthogonal to 1, and let (SF , V − SF ) be the cut found by Fiedler’s algorithm
given x. Let y be the non-negative vector with at most |V |/2 positive entries and
such that RL(y) ≤ RL(x) as promised by Lemma 5. Let 0 < t ≤ maxv{yv} be a
threshold such that

φ({v : yv ≥ t}) ≤
√

2RL(y) ≤
√

2RL(x)

as promised by Lemma 5. The set St := φ({v : yv ≥ t}) contains at most |V |/2
vertices, and the cut (St, V − St) is one of the cuts considered by Fiedler’s algorithm
on input x, and so

φ(SF , V − SF ) ≤ φ(St, V − St) = φ(St) ≤
√

2RL(x)

We will prove Lemma 4 next time. We conclude this lecture with a proof of Lemma 5.

Proof: (Of Lemma 5) First we observe that, for every constant c,

RL(x + c1) ≤ RL(x)

because the numerator of RL(x + c1) and the numerator of RL(x) are the same, and
the denominator of RL(x + c1) is ||x + c1||2 = ||x||2 + ||c1||2 ≥ ||x2||.
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Let m be the median value of the entries of x, and call x′ := x−m1. Then we have
RL(x′) ≤ RL(x), and the median of the entries of x′ is zero, meaning that x′ has
at most |V |/2 positive entries and at most |V |/2 negative entries. We will refer to
the vertices v such that x′v > 0 as the positive vertices, and the vertices v such that
x′v < 0 as the negative vertices.

We write
x′ = x+ − x−

where x+v = x′v if v is positive and x+v = 0 otherwise; similarly, x−v = −x′v if v is
negative, and x−v = 0 otherwise. Note that x+ and x− are orthogonal, non-negative,
and each of them has at most |V |/2 nonzero entries. Note also that, for every t, the
cut defined by the set {v : x+v ≥ t} is one of the cuts considered by Fiedler’s algorithm
on input x, because it is the cut

({v : xv < t+m}, {v : xv ≥ t+m})

Similarly, for every t, the cut defined by the set {v : x−v ≥ t} is one of the cuts
considered by Fiedler’s algorithm on input x, because it is the cut

({v : xv ≤ m− t}, {v : xv > m− t})

It remains to show that at least one of x+ or x− has Rayleigh quotient smaller than
or equal to the Rayleigh quotient of x′ (and, hence, of x). We claim that

RL(x′) =

∑
{u,v}(xu − xv)2

||x′||2
=

∑
{u,v}((x

+
u − x+v )− (x−u − x−v ))2

||x+||2 + ||x−||2

≥
∑
{u,v}(x

+
u − x+v )2 + (x−u − x−v )2

||x+||2 + ||x−||2

=
RL(x+) · ||x+||2 +RL(x−) · ||x−||2

||x+||2 + ||x−||2
≥ min{RL(x+), RL(x−)}

The only step that we need to justify is that for every edge {u, v} we have

((x+u − x+v )− (x−u − x−v ))2 ≥ (x+u − x+v )2 + (x−u − x−v )2

If {u, v} is an edge between two non-positive vertices, or between two non-negative
vertices, then the left-hand side and the right-hand side are clearly equal. If it is an
edge between a positive vertex u and a negative vertex v, then the left-hand side is
equal to (x+u + x−v )2, and the right-hand side is equal to (x+u )2 + (x−v )2. �
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