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Lecture 1: Introduction

In which we describe what this course is about, we introduce the Laplacian matrix of
a graph, and we prove our first result of spectral graph theory.

1 Overview

This is a class on graph theory and on graph algorithms, with an emphasis on the
use of methods from linear algebra and from convex optimization. In the finite-
dimensional case, linear algebra deals with vectors and matrices, and with a number
of useful concepts and algorithms, such as determinants, eigenvalues, eigenvectors,
and solutions to systems of linear equations.

The application to graph theory and graph algorithms comes from associating, in a
natural way, a matrix to a graph G = (V,E), and then interpreting the above con-
cepts and algorithms in graph-theoretic language. The most natural representation
of a graph as a matrix is via the |V | × |V | adjacency matrix of a graph, and certain
related matrices, such as the Laplacian and normalized Laplacian matrix will be our
main focus. We can think of |V |-dimensional Boolean vectors as a representing a
partition of the vertices, that is, a cut in the graph, and we can think of arbitrary
vectors as fractional cuts. From this point of view, eigenvalues are the optima of
continuous relaxations of certain cut problems, the corresponding eigenvectors are
optimal solutions, and connections between spectrum and cut structures are given by
rounding algorithms converting fractional solutions into integral ones. When we take
this view, we can naturally ask what other convex optimization problems, besides
the calculation of eigenvalues and eigenvectors, can be used to reason about cuts
and clusters in graphs, and this will lead us to the theory of semidefinite program-
ming, a convex optimization technique that generalizes both linear programming and
eigenvalue computations.

When we study random graphs, the matrices that we associate to them, such as the
adjacency matrix and the Laplacian matrix, will be random matrices. We will cover
some basic results from random matrix theory, which are very useful general results
to keep in your mathematical toolbox, and we will see how to apply such results to
the average-case analysis of spectral algorithms.
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An important property of random graphs is that they are expander graphs. We will
study the connection between expansion, random walks and other useful properties,
and we will see how to calculate the spectrum of Cayley graphs and how to combine
Cayley graphs to construct expanders. Time permitting, we will look at percolation
in graphs, a random process whose study ties together many of the techniques that
we introduce in this course.

The course can be roughly subdivided into four parts: in the first two parts of the
course we will study spectral graph algorithms, that is, graph algorithms that make use
of eigenvalues and eigenvectors of the normalized Laplacian of the given graph, and
we will derive both worst-case analyses (in the first part) and average-case analyses
(in the second part) of such algorithms. In the third part of the course we will
study semidefinite programming, and we will look at it as a way of making spectral
techniques more robust, in a sense that we will make precise. In the last part of the
course we will look at graph expansion and graph percolation.

1.1 Spectral Graph Algorithms

We will study approximation algorithms for the sparsest cut problem, in which one
wants to find a cut (a partition into two sets) of the vertex set of a given graph so
that a minimal number of edges cross the cut compared to the number of pairs of
vertices that are disconnected by the removal of such edges.

This problem is related to estimating the edge expansion of a graph and to find
balanced separators, that is, ways to disconnect a constant fraction of the pairs of
vertices in a graph after removing a minimal number of edges.

Finding balanced separators and sparse cuts arises in clustering problems, in which the
presence of an edge denotes a relation of similarity, and one wants to partition vertices
into few clusters so that, for the most part, vertices in the same cluster are similar
and vertices in different clusters are not. For example, sparse cut approximation
algorithms are used for image segmentation, by reducing the image segmentation
problem to a graph clustering problem in which the vertices are the pixels of the
image and the (weights of the) edges represent similarities between nearby pixels.

Balanced separators are also useful in the design of divide-and-conquer algorithms
for graph problems, in which one finds a small set of edges that disconnects the
graph, recursively solves the problem on the connected components, and then patches
the partial solutions and the edges of the cut, via either exact methods (usually
dynamic programming) or approximate heuristic. The sparsity of the cut determines
the running time of the exact algorithms and the quality of approximation of the
heuristic ones.

We will study a spectral algorithm first proposed by Fiedler in the 1970s, and to put
its analysis into a broader context, we will also study the Leighton-Rao algorithm,
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which is based on linear programming, and the Arora-Rao-Vazirani algorithm, which
is based on semidefinite programming. We will see how the three algorithms are based
on conceptually similar continuous relaxations.

Before giving the definition of sparsest cut, it is helpful to consider examples of graphs
that have very sparse cuts, in order to gain intuition.

Suppose that a communication network is shaped as a path, with the vertices rep-
resenting the communicating devices and the edges representing the available links.
The clearly undesirable feature of such a configuration is that the failure of a single
edge can cause the network to be disconnected, and, in particular, the failure of the
middle edge will disconnect half of the vertices from the other half.

This is a situation that can occur in reality. Most of Italian highway traffic is along
the highway that connect Milan to Naples via Bologna, Florence and Rome. The
section between Bologna and Florence goes through relatively high mountain passes,
and snow and ice can cause road closures. When this happens, it is almost impossible
to drive between Northern and Southern Italy. This is not an Italian exception:
I was once driving from Banff, a mountain resort town in Alberta which hosts a
mathematical institute, back to the US. Suddenly, traffic on Canada’s highway 1
came to a stop. People from the other cars, after a while, got out of the cars and
started hanging out and chatting on the side of the road. We asked if there was any
other way to go in case whatever accident was ahead of us would cause a long road
closure. They said no, this is the only highway here. Thankfully we started moving
again in half an hour or so.

Now, consider a two-dimensional
√
n ×
√
n grid. The removal of an edge cannot

disconnect the graph, and the removal of a constant number of edges can only discon-
nected a constant number of vertices from the rest of the graph, but it is possible to
remove just

√
n edges, a 1/O(

√
n) fraction of the total, and have half of the vertices

be disconnected from the other half.

A k-dimensional hypercube with n = 2k is considerably better connected than a grid,
although it is still possible to remove a vanishingly small fraction of edges (the edges
of a dimension cut, which are a 1/k = 1/ log2 n fraction of the total number of edges)
and disconnect half of the vertices from the other half.

Clearly, the most reliable network layout is the clique; in a clique, if an adversary
wants to disconnect a p fraction of vertices from the rest of the graph, he has to
remove at least a p · (1− p) fraction of edges from the graph.

This property of the clique will be our “gold standard” for reliability. The expansion
and the sparsest cut parameters of a graph measure how worse a graph is compared
with a clique from this point of view.

For simplicity, here we will give definitions that apply only to the case of regular
graphs.
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Definition 1 (Edge expansion of a set) Let G = (V,E) be a d-regular graph, and
S ⊆ V a subset of vertices. The edge expansion of S is

φ(S) :=
E(S, V − S)

d|S|

where E(S, V − S) is the number of edges in E that have one endpoint in S and one
endpoint in V − S.

d|S| is a trivial upper bound to the number of edges that can leave S, and so φ(S)
measures how much smaller the actual number of edges is than this upper bound.
We can also think of φ(S) as the probability that, if we pick a random node v in S
and then a random neighbor w of v, the node w happens to be outside of S.

The quantity 1 − φ(S) is the average fraction of neighbors that vertices in S have
within S. For example, if G represents a social network, and S is a subset of users
of expansion .3, this means that, on average, the users in S have 70% of their friends
within S.

If (S, V −S) is a cut of the graph, and |S| ≤ |V −S|, then φ(S) is, within a factor of
two, the ratio between the fraction E(S, V −S)/|E| = 2E(S, V −S)/dn of edges that
we have to remove to disconnect S from V − S, and the fraction |S| · |V − S|/

(
n
2

)
of

pairs of vertices that become unreachable if we do so. We define the edge expansion
of a cut as

φ(S, V − S) := max{φ(S), φ(V − S)}
The edge expansion of a graph is the minimum of the edge expansion of all cuts.

Definition 2 (Edge expansion of a graph) Let G = (V,E) be a d-regular graph,
its edge expansion is

φ(G) := min
S:0<|S|<|V |

φ(S, V − S) = min
S:0<|S|≤ |V |

2

φ(S)

If A is the adjacency matrix of a d-regular graph G = (V,E), then the normalized
Laplacian of G is the matrix L := I − 1

d
A. We will prove the Cheeger inequalities:

that if λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of L, counted with multiplicities and
sorted in nondecreasing order, then

λ2
2
≤ φ(G) ≤

√
2λ2

The lower bound φ(G) ≥ λ2
2

follows by using the variational characterization of
eigenvalues to think of λ2 as the optimum of a continuous optimization problem, and
then realizing that, from this point of view, λ2 is actually the optimum of a relaxation
of φ(G).
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The upper bound φ(G) ≤
√

2λ2 has a constructive proof, showing that the set SF
returned by Fiedler’s algorithm has size ≤ |V |/2 and satisfies φ(SF ) ≤ 2

√
λ2. The

two inequalities, combined, show that φ(SF ) ≤ 2
√
φ(G) and provide a (tight) worst-

case analysis of the quality of the cut found by Fiedler-s algorithm, compared with
the optimal cut.

To put this result in a broader context, we will see the Leighton-Rao approxima-
tion algorithm, based on linear programming, which finds a cut of expansion ≤
φ(G) · O(log |V |), and the Arora-Rao-Vazirani algorithm, based on semidefinite pro-
gramming, which finds a cut of expansion ≤ φ(G) ·O(

√
log |V |). The spectral, linear

programming, and semidefinite programming relaxation can all be seen as very re-
lated.

We will then consider combinatorial characterizations, and algorithms for other lapla-
cian eigenvalues.

We will prove a “higher order” Cheeger inequality that characterizes λk for k ≥ 2
similarly to how the standard Cheeger inequality characterizes λ2, and the proof will
provide a worst-case analysis of spectral partitioning algorithms similarly to how the
proof of the standard Cheeger inequality provides a worst-case analysis of Fiedler’s
algorithm.

The outcome of these results is that small Laplacian eigenvalues characterize the
presence of sparse cuts in the graph. Analogously, we will show that the value of λn
characterizes large cuts, and the proof a Cheeger-type inequality for λn will lead to
the worst-case analysis of a spectral algorithm for max cut.

1.2 Finding Sparse Cuts and Cliques in Random Graphs

Complementing the worst-case analysis of spectral algorithms that we will see in the
first part of the course, we will then see how to perform an average-case analysis of
graph algorithms, assuming that the graph comes from certain natural and interesting
probabilistic generative models. We will focus on two models: the Stochastic Block
Model and the Planted Clique model.

In the special case that we will focus on, the Stochastic Block Model generates an
n-vertex graph with a balanced sparse cut in the following way: we first randomly
partition the vertices into two subsets of equal size, and then we sample random edges
so that each pair of vertices on the same side of the partition is joined by an edge
with probability p, and each pair of vertices on different sides of the partition is joined
by an edge with probability q, where p > q. This models a network in which there
are two types of nodes, and nodes of the same type are more likely to be joined by
an edge. An important problem is, given a graph sampled from the Stochastic Block
Model, to recover the partition, and hence correctly recover the “type” of each node.
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For a fixed partition, the expectation of the adjacency matrix is (up to a small adjust-
ment) a rank-2 matrix where the largest eigenvalue is (p+ q) ·n/2, the second largest
is (p − q) · n/2 and all the other eigenvalues are zero; furthermore, the eigenvector
of the second eigenvalue is (up to a shift) a Boolean vector that indicates the type
of each vertex. The key application of spectral algorithms here is that the adjacency
matrix of the graph is a random matrix, and we know very strong concentration re-
sults for random matrices which tell us that a random matrix is usually very close,
in operator norm, to its expectation. This will allow us to infer that the eigenvector
of the second eigenvalue of the adjacency matrix that we see is going to be close to
the eigenvector of the second eigenvalue of the average adjacency matrix, which, as
we just said, gives us the partition and the types of the vertices.

In the Planted Clique distribution, we pick a random Erdös-Renyi graph and then
choose a random subset of nodes and turn it into a clique. The goal is to find
this “planted” clique. This is a special case of a number of inference problems and
unsupervised machine learning problems. We can again reason about the expected
adjacency matrix for a fixed choice of clique vertices, and see that its spectrum gives
away the clique, and then reason about concentration of the empirical adjacency
matrix around its expectation.

1.3 Semidefinite Programming

Semidefinite Programming is a class of convex optimization problems that generalizes
both linear programming and the computation of eigenvalues of Hermitian matrices
(and, in particular, the spectral methods discussed above). There are several appli-
cations of Semidefinite Programming to graph theory and graph algorithms, and we
will limit ourselves to the setting of the average-case analysis of algorithms for the
Stochastic Block Model and the Planted Clique problems.

In a nutshell, the improvements coming from Semidefinite Programming in these
particular examples will come from the fact that Semidefinite Programming gives
good approximations of the `∞-to-`1 operator norm of a matrix and from the fact
that random matrices concentrate around their expectation in a stronger way under
this norm than under the `2-to-`2 operator norm which is the one controlling the
performance of spectral algorithms. Furthermore, the `∞-to-`1 norm is more robust
to outliers than the `2-to-`2 norm, and this will translate into more robust algorithms.
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1.4 Expansion, Random Walks, and Percolation

1.4.1 Constructions and Applications of Expander Graphs

A family of constant-degree expanders is a collection of arbitrarily large graphs, all of
degree O(1) and edge expansion Ω(1). Expanders are useful in several applications,
and a common theme in such applications is that even though they are sparse, they
have some of the “connectivity” properties of a complete graph.

For example, if one removes a o(1) fraction of edges from an expander, one is left
with a connected component that contains a 1− o(1) fraction of vertices.

Lemma 3 Let G = (V,E) be a regular graph of expansion φ. Then, after an ε < φ
fraction of the edges are adversarially removed, the graph has a connected component
that spans at least 1− ε/2φ fraction of the vertices.

Proof: Let d be the degree of G, and let E ′ ⊆ E be an arbitrary subset of ≤
ε|E| = ε · d · |V |/2 edges. Let C1, . . . , Cm be the connected components of the graph
(V,E − E ′), ordered so that |C1| ≥ |C2| ≥ · · · ≥ |Cm|. We want to prove that
|C1| ≥ |V | · (1− 2ε/φ). We have

|E ′| ≥ 1

2

∑
i 6=j

E(Ci, Cj) =
1

2

∑
i

E(Ci, V − Ci)

If |C1| ≤ |V |/2, then we have

|E ′| ≥ 1

2

∑
i

d · φ · |Ci| =
1

2
· d · φ · |V |

but this is impossible if φ > ε.

If |C1| ≥ |V |/2, then define S := C2 ∪ · · · ∪ Cm. We have

|E ′| ≥ E(C1, S) ≥ d · φ · |S|

which implies that |S| ≤ ε
2φ
· |V | and so C1 ≥

(
1− ε

2φ

)
· |V |. �

In a d-regular expander, the removal of k edges can cause at most O(k/d) vertices to
be disconnected from the remaining “giant component.” Clearly, it is always possible
to disconnect k/d vertices after removing k edges, so the reliability of an expander is
essentially best possible.

Another way in which expander graphs act similarly to a complete graph is the
following. Suppose that, given a graph G = (V,E), we generate a sequence v1, . . . , vk
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by choosing v1 ∈ V uniformly at random and then performing a (k− 1)-step random
walk. If G is a complete graph (in which every vertex has a self-loop), this process
uses k log |V | random bits and generates k uniform and independent random vertices.
In an expander of constant degree, the process uses only log |V |+O(k) random bits,
and the resulting sequence has several of the useful statistical properties of a sequence
generated uniformly at random. Especially in the case in which k is of the order of
log |V |, using O(log |V |) instead of O(log2 |V |) random bits can be a significant saving
in certain application. (Note, in particular, that the sample space has polynomial size
instead of quasi-polynomial size.)

Constructions of constant-degree expanders are useful in a variety of applications,
from the design of data structures, to the derandomization of algorithms, from efficient
cryptographic constructions to being building blocks of more complex quasirandom
objects.

There are two families of approaches to the explicit (efficient) construction of bounded-
degree expanders. One is via algebraic constructions, typically ones in which the ex-
pander is constructed as a Cayley graph of a finite group. Usually these constructions
are easy to describe but rather difficult to analyze. The study of such expanders, and
of the related group properties, has become a very active research program. There are
also combinatorial constructions, which are somewhat more complicated to describe
but considerably simpler to analyze.

1.4.2 Mixing time of random walks

If one takes a random walk in a regular graph that is connected and not bipartite,
then, regardless of the starting vertex, the distribution of the t-th step of the walk
is close to the uniform distribution over the vertices, provided that t is large enough.
It is always sufficient for t to be quadratic in the number of vertices; in some graphs,
however, the distribution is near-uniform even when t is just poly-logarithmic, and,

indeed, the time is at most O
(

1
λ2

log |V |
)

, and thus it is at most logarithmic in

expander graphs.

Among other applications, the study of the “mixing time” (the time that it takes to
reach the uniform distribution) of random walks has applications to analyzing the
convergence time of certain randomized algorithms.

The design of approximation algorithms for combinatorial counting problems, in which
one wants to count the number of solutions to a given NP-type problem, can be re-
duced to the design of approximately uniform sampling in which one wants to approxi-
mately sample from the set of such solutions. For example, the task of approximately
counting the number of perfect matchings can be reduced to the task of sampling
almost uniformly from the set of perfect matchings of a given graph. One can design
approximate sampling algorithms by starting from an arbitrary solution and then

8



making a series of random local changes. The behavior of the algorithm then corre-
sponds to performing a random walk in the graph that has a vertex for every possible
solution and an edge for each local change that the algorithm can choose to make.
Although the graph can have an exponential number of vertices in the size of the
problem that we want to solve, it is possible for the approximate sampling algorithm
to run in polynomial time, provided that a random walk in the graph converges to
uniform in time poly-logarithmic in its size.

The study of the mixing time of random walks in graphs is thus a main analysis tool
to bound the running time of approximate sampling algorithms (and, via reductions,
of approximate counting algorithms).

As a way of showing applications of results proved so far, we will show that, because

of Cheeger’s inequality, the mixing time is upper-bounded by O
(

1
φ2

log |V |
)

, and

then we will use the dual of the Leighton-Rao relaxation to show that 1/φ can be
upper-bounded by the congestion of a certain flow problem. We will apply this theory
to the analysis of an algorithm that approximates the number of perfect matchings
in a given dense bipartite graph.

1.4.3 Percolation

Given a graph G = (V,E) and a parameter 0 < p < 1, the bond percolation process
applied to G is the process in which each edge of G is kept with probability p and
deleted with probability 1−p; the choices for different edges are mutually independent.
The main question about the percolation process is whether the residual graph has a
large connected component. This problem originates in mathematical physics and it
has found application in the study of network reliability, in the study of influence in
social networks, and in epidemiological models.

We will see how to use spectral techniques, expansion, and properties of random walks
to recover some of the basic results from the theory of percolation.

2 The Basics of Spectral Graph Theory

Given an undirected graph G = (V,E), the approach of spectral graph theory is to
associate a symmetric real-valued matrix to G, and to related the eigenvalues of the
matrix to combinatorial properties of G.

For the sake of this lecture, we will restrict ourselves to the case in which G is a
d-regular graph, and we will then see how to extend our results to apply to irregular
graphs as well.

The most natural matrix to associate to G is the adjacency matrix A such that

9



Ai,j = 1 if {i, j} ∈ E and Ai,j = 0 otherwise. In the second part of the course, in
which we will study expander graphs, the adjacency matrix will indeed be the most
convenient matrix to work with. For the sake of the algorithms that we will analyze in
the first part of the course, however, a slight variation called the normalized Laplacian
is more convenient.

There are a few ways to motivate the definition of the Laplacian. One way is the fol-
lowing: the variational characterization of the eigenvalues of real symmetric matrices
tells us that we can think of the eigenvalues of M as optima of min-max optimization
problems in which vectors x ∈ RV are feasible solutions and the cost function is the
Rayleigh quotient

RM(x) =
xTMx

xTx

We know that every homogeneous polynomial of degree 2 can be realized as xTMx
for some matrix M , and,if we want to study cuts in a graph G = (V,E), it makes
sense to choose a matrix M such that

xTMx =
∑
{u,v}∈E

(xu − xv)2

because, if x ∈ {0, 1}V is a Boolean vector, representing a cut in the graph, then the
right-hand-side expression above is counting the number of edges that cross the cut,
and so optimization problems with the above cost functions will be relaxations of cut
problems.

Some calculations show that the matrix having such a property is dI − A, which is
called the Laplacian matrix of G. Indeed, we can verify that

xT (dI − A)x =
∑
{u,v}∈E

(xu − xv)2

because both expressions are easily seen to be equal to∑
v

dx2v − 2
∑
{u,v}∈E

xuxv

As we will see in a moment, the eigenvalues of dI−A are in the range [0, 2d], and it is
not hard to see that their sum is dn, so it is convenient to divide the Laplacian matrix
by d so that the range and the average values of the eigenvalues of the resulting matrix
are independent of the degree. (This degree independence will make it possible to
generalize results to the irregular case.)

We have thus reached the following definition.

Definition 4 (Normalized Laplacian) The normalized Laplacian matrix of an undi-
rected d-regular graph G = (V,E) is L := I − 1

d
A.
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We shall now prove the following relations between the eigenvalues of L and certain
purely combinatorial properties of G.

Theorem 5 Let G be a d-regular undirected graph, let A be the adjacency matrix of
G, and L = I− 1

d
·A be the normalized Laplacian matrix of G. Let λ1 ≤ λ2 ≤ · · · ≤ λn

be the real eigenvalues of L with multiplicities, in nondecreasing order. Then

1. λ1 = 0 and λn ≤ 2.

2. λk = 0 if and only if G has at least k connected components.

3. λn = 2 if and only if at least one of the connected components of G is bipartite.

Note that the first two properties imply that the multiplicity of 0 as an eigenvalue is
precisely the number of connected components of G.

Proof: By the characterization of the Rayleigh quotient of L that we established
above, and from the variational characterization of eigenvalues, we have

λ1 = min
x∈Rn−{0}

∑
{u,v}∈E(xu − xv)2

d
∑

v x
2
v

and so λ1 ≥ 0 because the Rayleigh quotient, being a ratio of sums of squares, is
always non-negative.

If we take 1 = (1, . . . , 1) to be the all-one vector, we see that its Rayleigh quotient
is 0, and so 0 is the smallest eigenvalue of L, with 1 being one of the vectors in the
eigenspace of 1.

We also have the following formula for λk:

λk = min
S k−dimensional subspace of Rn

max
x∈S−{0}

∑
{u,v}∈E(xu − xv)2

d
∑

v x
2
v

So, if λk = 0, there must exist a k-dimensional space S such that for every x ∈ S
and every {u, v} ∈ E, we have xu = xv, and so xu = xv for every u, v which are
in the same connected component. This means that each x ∈ S must be constant
within each connected component of G, and so the dimension of S can be at most
the number of connected components of G, meaning that G has at least k connected
components.

Conversely, if G has at least k connected components, we can let S be the space of
vectors that are constant within each component, and S is a space of dimension at
least k such that for every element x of S we have∑

{u,v}∈E

(xu − xv)2 = 0
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meaning that S is a witness of the fact that λk = 0.

Finally, to study λn, we first note that we have the formula

λn = max
x∈Rn−{0}

xTLx

xTx

from the variational characterization of eigenvalues (see Handout 0).

We also observe that for every vector x ∈ Rn we have

2xTx− xTLx =
1

d

∑
{u,v}∈E

(xu + xv)
2

and so

λn = 2− min
x∈Rn−{0}

∑
{u,v}∈E(xu + xv)

2

d
∑

v x
2
v

from which it follows that

λn ≤ 2

and if λn = 2 then there must be a non-zero vector x such that∑
{u,v}∈E

(xu + xv)
2 = 0

which means that xu = −xv for every edge (u, v) ∈ E.

Let us now define A := {v : xv > 0} and B := {v : xv < 0}. The set A ∪ B is
non-empty (otherwise we would have x = 0) and is either the entire graph, or else
it is disconnected from the rest of the graph, because otherwise an edge with an
endpoint in A∪B and an endpoint in V − (A∪B) would give a positive contribution
to
∑
{u,v}∈E(xu − xv)2; furthermore, every edge incident on a vertex on A must have

the other endpoint in B, and vice versa. Thus, A ∪ B is a connected component, or
a collection of connected components, of G which is bipartite, with the bipartition
A,B. �
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