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Lecture 0: Linear Algebra Background

In which we review linear algebra prerequisites.

The following background from linear algebra will be sufficient for the sake of this
course: to know what is an eigenvalue and an eigenvector, to know that real symmetric
matrices have real eigenvalues and their real eigenvectors are orthogonal, and to know
the variational characterization of eigenvalues.

1 Basic Definitions

If x = a+ ib is a complex number, then we let x̄ = a− ib denote its conjugate. Note
that a complex number x is real if and only if x = x̄. If M ∈ Cm×n is a matrix, then
M∗ denotes the conjugate transpose of M , that is, (M∗)i,j = Mj,i. If the entries of M
are real, then M∗ = MT , where MT is the transpose of M , that is, the matrix such
that (MT )i,j = Mj,i.

We say that a matrix M is Hermitian if M = M∗. In particular, real symmetric
matrices are Hermitian.

If x,y ∈ Cn are two vectors, then their inner product is defined as

〈v,w〉 := v∗w =
∑
i

vi · wi (1)

Notice that, by definition, we have 〈v,w〉 = (〈w,v〉)∗ and 〈v,v〉 = ||v||2. Note also
that, for two matrices A,B, we have (A ·B)∗ = B∗ ·A∗, and that for every matrix M
and every two vectors x, y, we have

〈Mx,y〉 = x∗M∗y = 〈x,M∗y〉

If M ∈ Cn×n is a square matrix, λ ∈ C is a scalar, v ∈ Cn − {0} is a non-zero vector
and we have

Mv = λv (2)
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then we say that λ is an eigenvalue of M and that v is eigenvector of M corresponding
to the eigenvalue λ.

2 The Spectral Theorem

We want to prove

Theorem 1 (Spectral Theorem) Let M ∈ Rn×n be a symmetric matrix with real-
valued entries, then there are n real numbers (not necessarily distinct) λ1, . . . , λn and
n orthonormal real vectors x1, . . . ,xn, xi ∈ Rn such that xi is an eigenvector of λi.

Assuming the fundamental theorem of algebra (that every polynomial has a complex
root) and basic properties of the determinant, the cleanest proof of the spectral theo-
rem is to proceed by induction on n, and to show that M must have a real eigenvalue
λ1 with a real eigenvector v1, and to show that M maps vectors orthogonal to v1 to
vectors orthogonal to v1. Then one applies the inductive hypothesis to M restricted
to the (n − 1)-dimensional space of vectors orthogonal to v1 and one recovers the
remaining (n− 1) eigenvalues and eigenvectors.

The cleanest way to formalize the above proof is to give all definitions and results
in terms of linear operators T : V → V where V is an arbitrary vector space over
the reals. This way, however, we would be giving several definitions that we would
never use in the future, so, instead, the inductive proof will use a somewhat inelegant
change of basis to pass from M to an (n− 1)× (n− 1) matrix M ′.

We begin by showing that a real symmetric matrix has real eigenvalues and eigenvec-
tors.

Theorem 2 If M ∈ Rn×n is symmetric, then there is a real eigenvalue λ ∈ R and a
real eigenvector v ∈ Rn such that Mv = λv.

We begin by noting that every matrix has a complex eigenvalue.

Lemma 3 For every matrix M ∈ Cn×n, there is an eigenvalue λ ∈ C and an eigen-
vector v ∈ Cn such that Mv = λv.

Proof: Note that λ is an eigenvalue for M if and only if

∃x 6= 0. (M − λI)x = 0

which is true if and only if the rows of M − λI are not linearly independent, which is
true if and only if

det(M − λI) = 0
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Now note that the mapping t→ det(M − tI) is a univariate polynomial of degree n
in t, and so it must have a root λ by the fundamental theorem of algebra. �

Next we show that if M is real and symmetric, then its eigenvalues are real.

Lemma 4 If M is Hermitian, then, for every x and y,

〈Mx,y〉 = 〈x,My〉

Proof:

〈Mx,y〉 = 〈x,M∗y〉 = 〈x,My〉
�

Lemma 5 If M is Hermitian, then all the eigenvalues of M are real.

Proof: Let M be an Hermitian matrix and let λ be a scalar and x be a non-zero
vector such that Mx = λx. We will show that λ = λ∗, which implies that λ is a real
number.

We note that

〈Mx,x〉 = 〈λx,x〉 = λ∗||x||2

and

〈x,Mx〉 = 〈x, λx〉 = λ||x||2

and by the fact that 〈Mx,x〉 = 〈x,Mx〉 , we have λ = λ∗. �

In order to prove Theorem 2, it remains to argue that, for a real eigenvalue of a real
symmetric matrix, we can find a real eigenvector.

Proof:[Of Theorem 2] Let M ∈ Rn×n be a real symmetric matrix, then M has a
real eigenvalue λ and a (possibly complex valued) eigenvector z = x + iy, where x
and y are real vectors. We have

Mx + iMy = λx + iλy

from which (recalling that the entries of M and the scalar λ are real) it follows that
Mx = λx and that My = λy; since x and y cannot both be zero, it follows that λ
has a real eigenvector. �

We are now ready to prove the spectral theorem
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Proof:[Of Spectral Theorem] We proceed by induction on n. The case n = 1 is
trivial.

Assume that the statement is true for dimension n − 1. Let λ1 be a real eigenvalue
of M and x1 be a real eigenvector λ1.

Now we claim that for every vector y that is orthogonal to x1, then My is also
orthogonal to x1. Indeed, the inner product of My and x1 is

〈x1,My〉 = 〈Mx1,y〉 = 〈λx1,y〉 = 0

Let V be the n−1-dimensional subspace of Rn that contains all the vectors orthogonal
to x1. We want to apply the inductive hypothesis to M restricted to V ; we cannot
literally do that, because the theorem is not stated in terms of arbitrary linear oper-
ators over vector spaces, so we will need to do that by fixing an appropriate basis for
V .

let B ∈ Rn×(n−1) be a matrix that computes a bijective map from Rn−1 to V . (If
b1, . . . ,bn−1 is an orthonormal basis for V , then B is just the matrix whose columns
are the vectors bi.) Let also B′ ∈ R(n−1)×n be the matrix such that, for every y ∈ V ,
BB′y = y. (We can set B′ = BT where B is as described above.) We apply the
inductive hypothesis to the matrix

M ′ := B′MB ∈ R(n−1)×(n−1)

and we find eigenvalues λ2, . . . , λn and orthonormal eigenvectors y2, . . . ,yn for M ′.

For every i = 2, . . . , n, we have

B′MByi = λiyi

and so
BB′MByi = λiByi

Since Byi is orthogonal to x1, it follows that MByi is also orthogonal to x1, and so
BB′MByi = MByi, so we have

MByi = λiByi

and, defining xi := Byi, we have

Mxi = λixi

Finally, we observe that the vectors xi are orthogonal. By construction, x1 is orthog-
onal to x2, . . . ,xn, and, for every 2 ≤ i < j ≤ n, we have that

〈xi,xj〉 = 〈Byi, Byj〉 = 〈yi, B
TByj〉 = 〈yi,yj〉 = 0

We have not verified that the vectors xi have norm 1 (which is true), but we can scale
them to have norm 1 if not. �
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3 Variational Characterization of Eigenvalues

We conclude these notes with the variational characterization of eigenvalues for real
symmetric matrices.

Theorem 6 Let M ∈ Rn×n be a symmetric matrix, and λ1 ≤ λ2 ≤ · · ·λn be the
eigenvalues of M in non-increasing order. Then

λk = min
k−dim V

max
x∈V−{0}

xTMx

xTx

The quantity xTMx
xTx

is called the Rayleigh quotient of x with respect to M , and we
will denote it by RM(x).

Proof: Let v1, . . . ,vn be orthonormal eigenvectors of the eigenvalues λ1, . . . , λn,
as promised by the spectral theorem. Consider the k-dimensional space spanned by
v1, . . . ,vk. For every vector x =

∑k
i=1 aivi in such a space, the numerator of the

Rayleigh quotient is

∑
i,j

aiajv
T
i Mvj =

∑
i,j

aiajλjv
T
i vj =

k∑
i=1

λia
2
i ≤ λk ·

k∑
i=1

a2i

The denominator is clearly
∑k

i=1 a
2
j , and so RM(x) ≤ λk. This shows that

λk ≥ min
k−dim V

max
x∈V−{0}

xTMx

xTx

For the other direction, let V be any k-dimensional space: we will show that V must
contain a vector of Rayleigh quotient ≥ λk. Let S be the span of vk, . . . ,vn; since
S has dimension n − k + 1 and V has dimension k, they must have some non-zero
vector in common. Let x be one such vector, and let us write x =

∑n
i=k aivi. The

numerator of the Rayleigh quotient of x is

n∑
i=k

λia
2
i ≥ λk

∑
i

a2i

and the denominator is
∑

i a
2
i , so RM(x) ≥ λk. �

We have the following easy consequence.

Fact 7 If λ1 is the smallest eigenvalue of a real symmetric matrix M , then

λ1 = min
x 6=0

RM(x)

Furthermore, every minimizer is an eigenvector of λ1.
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Proof: The identity is the k = 1 case of the previous theorem. For the furthermore
part, let λ1 ≤ · · ·λn be the list of eigenvalues of M in non-decreasing order, and
v1, . . . ,vn be corresponding eigenvectors. If x =

∑
i aivi is any vector, then

RM(x) =

∑
i λia

2
i∑

i a
2
i

If RM(x) = λ1, then ai = 0 for every i such that λi > λ1, that is, x is a linear
combination of eigenvectors of λ1, and hence it is an eigenvector of λ1. �

Fact 8 If λn is the largest eigenvalue of a real symmetric matrix M , then

λn = max
x 6=0

RM(x)

Furthermore, every maximizer is an eigenvector of λn.

Proof: Apply Fact 7 to the matrix −M . �

Fact 9 If λ1 is the smallest eigenvalue of a real symmetric matrix M , and x1 is an
eigenvector of λ1, then

λ2 = min
x 6=0, x⊥x1

RM(x)

Furthermore, every minimizer is an eigenvector of λ2.

Proof: A more conceptual proof would be to consider the restriction of M to the
space orthogonal to x1, and then apply Fact 7 to such a linear operator. But, since we
have not developed the theory for general linear operators, we would need to explicitly
reduce to an (n− 1)-dimensional case via a projection operator as in the proof of the
spectral theorem.

Instead, we will give a more hands-on proof. Let λ1 ≤ λ2 ≤ · · ·λn be the list of
eigenvalues of M , with multiplicities, and v1, . . . ,vn be orthonormal vectors as given
by the spectral theorem. We may assume that v1 = x1, possibly by changing the
orthonormal basis of the eigenspace of λ1. For every vector x =

∑k
i=2 aivi orthogonal

to v1, its Rayleigh quotient is

RM(x) =

∑n
i=2 λia

2
i∑

i a
2
i

≥ λ2

and the minimum is achieved by vectors x such that ai = 0 for every λi > λ2, that
is, for vectors x which are linear combinations of the eigenvectors of λ2, and so every
minimizer is an eigenvector of λ2. �
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