
CS II Lecture 5

- Finding strongly Connected components

in a directed graph

- Breadth First search

Finding SCC
,

we have

- An algorithm that finds connected components

in undirected graphs
•
what does it do in directed graphs ?

- An algorithm that finds a topological
sort in directed acyclic graphs

o.
what does it do in directed

graphs with cycles ?

- An algorithm that finds connected components

in undirected graphs

Global variables :

graph G = CV ,
E)

'

array
visited I] one entry per

vertex

initialized to F

array comp E]
of integers ,

one

entry per vertex

-
one :÷÷:

nee :/for each w|ifnoteeY
def DFS - cc C)

C = O

for each v in
V :

if not visited Iv) ;
C = Ct I

explore Lv, c)

3
and

W

'
am

w,!n:ab 3 Tu w g

h s
n

Run using

a ,
b
,
c
,
d

,
er f , g ,

4

as order in
" for each v in V

"

Run using

e
,
f

,

b
,
h

,
a

, c ,
di
g

Rm using ⇐ IIE , ht # a'dig

Or, iforderinwhichsccsfi.rs#appearinh-stisrererseof-
topologicalorderamongs.cc#

An algorithm that finds a topological
sort in directed acyclic graphs

Global variables :

graph G = CV ,
E)

array
visited I] one entry per

vertex

initialized to F

list L initialized too
-
def explore Cv) :

visited Lv]=T
such that crew) EE ;\ for

:a,,|
def DFS C) :

for each v in
V :

if not visited Iv) ;
explore Lv)

¥ ATEa
① c

'
"

\

b ⑤ ①g
b

Using a ,b , c
,
d ,

e
,
f. g. h order

in " for each Vin V
"

(= EEbth-E.IE#
→

secs first appear in list

in topological order of secs

Lemma - - a -
-
- b

. - v . -

V - - -

-

- a -
- u . - b - -

- V

in
Sf cow) is an edge between Secs

,

a is last one to complete explore C .)

in SCC of u ,
b is last one

to complete explore C- I in SCC of v
,

then explore Ca) terminates after

explore Cb)

proof
when explore Lu) looks at Curr)

visited Eb] .

-

F visited [b) = T

visited -LD=F explore CS) has

discover b inside
terminated

explore us
while explore us

active

explore Cal
terminates

after explore cul

explore cul terminates
after explore Cb)

Algorithm for Sccs

Given G

- Reverse direction of edges to create GR

- Run topological sort algorithm on GR

•
obtain list of vertices such that

order in which secs of GR first

appear in GR is topological order

of Scc

• Secs of G appear in
L in

reverse of topological order

of G

- Run undirected cc algorithm

on G using
L for order

in which to run
" for each vinv

"

3rd

:

O ④
e da do

"

Example
2 a

① c

ay ⑧ c ←

,
on IT /

n le
n

d \ / O
'

f
d

Iron af → toor

b ' Jon ⑨ng
b

,

as

h

G
GR

- Run IS . algorithm on GR

obtain list

L = EE k feed b

- Run undirected cc algorithm on

G using
L for " for each vin V

"

loop

New goal : explore a graph

starting from a node V

in increasing distance from u

a ↳ ya ,
c.
b
, off, ecg , l

✓ -9-0to do
-beds

be Gm n

'looped.- oh

Queue

operations
- create empty -queue

-

insert an element

-
remove

and read " oldest element
"

first
'

last

insert Cbl f A
insert cc)

a
b

i - i i it size - L
n - I

insert la) 1=01
remover

'

=
b
¥14]

size=3insertion
first"

on its:%remove C) = C

Recall queue :

data structure that supports
operations of
-
insert an element

- remove and read " oldest element
"

def BFS (G .
.

s) :

visited = boolean array indexed by
vertices initialized to F

Q = initially empty queue

visited Tessa T

Q
.

insert (s)

while not Q
.
empty C) :

✓ = Q . eject c)

for each iv. w) edge in G :

if not visited [w] :

visited Ew]=T
Q

.

insert (w)

s a b C Q visited
④-#Emm s s

/ e
f g a. d said

d
-

d- dm- ok
e.hias.a.d.e.tn

↳ -£!
-
¢ b. e. h siaidiehib

h e m n

Q
T

H
m
n

order in
which nodes come

out of Q

Eidaehb .e÷fI ' }

Properties of BFS

- nodes are removed from Q

in increasing distance from s

- edge a. v) that causes v
to

be added to Q is in shortest

path from s to v

Lemma

For each d = 0,42 . - -

there is a point in
time in the execution

of the algorithm such that
the visited

nodes are precisely those at
distance ed

from S
,

and Q contains precisely

the vertices at distance =D

-

01=0 happens
before start while loop

-

suppose
there is point in time when

Q contains precisely vertices at distance ol

visited -LvJ=T iff r has distanced

from #
Q
visited it

←

•

.

.

.÷÷÷÷÷¥,

Ideas of Dijkstra

it ÷:
simulate BFS in which

5

g-son

is replaced by

g-
So-so-so-so-sq

