
CSI Lecture 4

Graphs
Representations
connectivity
DFS

Topological sort

Represent a graph as a matrix

A B C D

A O L O L

B L O O 2

a

:÷÷ too. :)
D

A B A B C D

o-70 A O L O l

§ ←toe B (o o i o)c
O l U l

D
O O

O O

n -
- # vertices

•
check if two given

vertices are joined by an edge : time OCI)

o
list neighbors of a given

vertex : time Ocn)

° Memory
use

0 (NZ)

rt bits

Adjacency List Representation

B
A : B, D

*

Hy B : AD

o_0
c : D

C D

b : A , B , C

A B

O-so
A : B. D

I 19 B :c

O ← o c c : B.S
D

D : f

n = # vertices m= # edges degree cut # neighbors
of u

check if edge cowl exists : time (degree us)
x

List neighbors of v :
time (degree Cri)

✓

Memory
used : E OC degree en) = 0cm)r

undirected directed

§ degree lol =2m E degree them

connected components

C D

strongly connected components

D

Depth-first search

Global variables :

graph G = CV ,
E)

boolean array
visited I] one entry per

vertex

initialized to F

-
def explore C v) :

visited Lv]=T
such that Chul EE ;\ for %7E-e.geios.ieted.ws : I

def DFS C) :

for each v in
V :

if not visited Iv) ;
explore Lv)

A of

④-⑧
o
t

C D

explore Cc)
explore LD)

explore CA)

explore CB)

A B F

o- ¥
⑤t f L

⑧←⑧ c ④

D H

explore C c)

Connected components
Global variables :

graph G = CV ,
E)

'

array
visited I] one entry per

vertex

initialized to F

array comp []
of integers ,

one

entry per vertex

-
def explore Cv , c)

visited Lv]=T ; comp [
v] -- c

\ for :a¥÷÷÷÷÷i¥
"" E :/

,
e)

-

def DFS - cc C)

C = O

for each v in
V :

if not visited Iv) ;
C = Ct I

explore Lv, c)

comp €2212
AB cos FHL

k LB ZFA

#y⑤ µ¥
¥④' te

& C D 2

explore
" '
"

DFS
-cc

explore Ca , z)

explore CF
, 2)

A zB LF
④as

I f9X¥⑧L
' ④ c %
D H

DFS
-
cc

if nodes are considered

in order

- AIB ,
C

,
D
,
F

, H ,
L

- L
,
D
, B ,

C
,
A

,
F , H

Topological sort of

Directed Graphs

sitios
ee

A- o←°B→

→gt→os

OB

A OTT
↳

o c
→of

D

Topological sort and
Directed cycles

o. If a
directed graph has a cycle

Vz → Vz → Vz → - - →Vk → Vz

(Vz
, vz) C-

E

(Vz , Vz) C-
E

:

(via: Vk) EE
(Vk

.
Vz) EE

Then graph has no topological sort

- suppose
there was one

consider first vertex of

cycle in the order of

the top .
Sort

-
- -g on.

. .

- -

o If a
directed graph has no

cycle then it has a E. s
.

Consider algorithm :

takes a vertex with no incoming edge

puts it first
in ordering

removes from graphs
continue recursively

ceaim:÷a÷::::::i÷:::::tTgraphhasacye.ee#Vi=Vjo-oo-sq-so-oo-
g.
→ y

Topological sort and DFS

Global variables :

graph G = CV ,
E)

array
visited I] one entry per

vertex

initialized to F

list L initialized too
-
def explore Cv) :

visited Lv]=T\ for :a¥÷÷÷÷÷÷ts :
""- E :/

add#dofL

def DFS C) :

for each v in
V :

if not visited Iv) ;
explore Lv)

B

⑧
explore CA)

← I
→ explore Cc)

A
V

g
explore CD)

→ /
'

explore CB)

c

L = BACD

-

Lemma
0%8

Suppose
G is a Directed Acyclic

Graph and Curr) is an edge .

Then explore cu)
terminates before

explore cu) terminates

And so u will be placed before V

in L

Proof
when run explore co) and look at iv. v1

v is
not visited

÷÷÷÷÷÷: I ÷. are

:÷:::c.

explore us has terminated
explore us still running

strongly connected

components of a Directed

Graph a

Fy z) d
°

Age 11 .
z①¥£- ④ M 2

, 2,3

B H

} ↳ e 3

N¥ N
.

RQ 447 ABE

Fa

explore cu)Lemma
v visited / v not visited

Jf cowl is an edge ,
a is last

node for which explore C) terminates

in component of u ,
b is last

node for which explore C)

terminates in component of v,
explore Cb) terminates before explore Ca)

terminates

-
- -

- -
-
-

"

explore co)

considers Cu ,v)

b not visited

f
b visited

explore

Algorithm for strongly
connected components
Given directed graph G

-

construct graph GR obtained /
by reversing

each edge of G

-

- run topological sort algorithms

(onGR.obtainh.at#
- run

undirected connected

component algorithm on G
, using

L as ordering in
' ' for each v "

in procedure "

DFS
'

