
CSI Lecture 4

Graphs
Representations
connectivity
DFS

Topological sort



Represent a graph as a matrix
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check if two given

vertices are joined by an edge : time OCI )
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Adjacency List Representation
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check if edge cowl exists : time ( degree us)
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List neighbors of v :
time ( degree Cri)
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connected components
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strongly connected components
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Depth-first search

Global variables :

graph G = CV ,
E )

boolean array
visited I ] one entry per

vertex

initialized to F

-
def explore C v ) :

visited Lv]=T
such that Chul EE ;\ for %7E-e.geios.ieted.ws : I

def DFS C ) :

for each v in
V :

if not visited Iv) ;
explore Lv )
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Connected components
Global variables :

graph G = CV ,
E )

'

array
visited I ] one entry per

vertex

initialized to F

array comp [ ]
of integers ,

one

entry per vertex

-
def explore Cv , c )

visited Lv]=T ; comp [
v ] -- c
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,
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def DFS - cc C )

C = O

for each v in
V :

if not visited Iv) ;
C = Ct I

explore Lv, c)
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Topological sort of

Directed Graphs
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Topological sort and
Directed cycles

o. If a
directed graph has a cycle

Vz → Vz → Vz → - - →Vk → Vz

(Vz
, vz ) C-

E

(Vz , Vz) C-
E

:

( via: Vk ) EE
(Vk

.
Vz) EE

Then graph has no topological sort

- suppose
there was one

consider first vertex of

cycle in the order of

the top .
Sort

-
- -g on.

. .

- -

o If a
directed graph has no

cycle then it has a E. s
.

Consider algorithm :

takes a vertex with no incoming edge

puts it first
in ordering

removes from graphs
continue recursively

ceaim:÷a÷::::::i÷:::::tTgraphhasacye.ee#Vi=Vjo-oo-sq-so-oo-
g.
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Topological sort and DFS

Global variables :

graph G = CV ,
E )

array
visited I ] one entry per

vertex

initialized to F

list L initialized too
-
def explore Cv ) :

visited Lv]=T\ for :a¥÷÷÷÷÷÷ts :
""- E :/

add#dofL

def DFS C ) :

for each v in
V :

if not visited Iv) ;
explore Lv )
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Lemma
0%8

Suppose
G is a Directed Acyclic

Graph and Curr ) is an edge .

Then explore cu )
terminates before

explore cu ) terminates

And so u will be placed before V

in L

Proof
when run explore co ) and look at iv. v1

v is
not visited

÷÷÷÷÷÷: I ÷. are

:÷:::c.

explore us has terminated
explore us still running





strongly connected

components of a Directed

Graph a
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explore cu )Lemma
v visited / v not visited

Jf cowl is an edge ,
a is last

node for which explore C ) terminates

in component of u ,
b is last

node for which explore C )

terminates in component of v,
explore Cb ) terminates before explore Ca)

terminates
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Algorithm for strongly
connected components
Given directed graph G

-

construct graph GR obtained /
by reversing

each edge of G

-

- run topological sort algorithms

(onGR.obtainh.at#
- run

undirected connected

component algorithm on G
, using

L as ordering in
' ' for each v "

in procedure "

DFS
'


