
Bocconi University — 40391: Optimization Handout LN11
Professor Luca Trevisan October 23, 2019

Notes for Lecture 11

1 Online Optimization

Online convex optimization deals with the following setup: we want to design an algorithm
that, at each discrete time step t = 1, 2, . . ., comes up with a solution xt ∈ K, where K is
a certain convex set of feasible solution. After the algorithm has selected its solution xt,
a convex cost function ft : K → R, coming from a known restricted set of admissible cost
functions F , is revealed, and the algorithm pays the loss ft(xt).

Again, the algorithm has to come up with a solution without knowing what cost functions
it is supposed to be optimizing. Furthermore, we will think of the sequence of cost functions
f1, f2, . . . , ft, . . . not as being fixed in advanced and unknown to the algorithm, but as being
dynamically generated by an adversary, after seeing the solutions provided by the algorithm.

The offline optimum after T steps is the total cost that the best possible fixed solution
would have incurred when evaluated against the cost functions seen by the algorithm, that
is, it is a solution to

min
x∈K

T∑
t=1

ft(x)

The regret after T steps is the difference between the loss suffered by the algorithm and
the offline optimum, that is,

RegretT =
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x)

The remarkable results that we will review give algorithms that achieve regret

RegretT ≤ OK,F (
√
T)

that is, for fixed K and F , the regret-per-time-step goes to zero with the number of steps, as

O
(

1√
T

)
. It is intuitive that our bounds will have to depend on how big is the “diameter”

of K and how large is the “magnitude” and “smoothness” of the functions f ∈ F , but
depending on how we choose to formalize these quantities we will be led to define different
algorithms.

2 Multiplicative Weights

The multiplicative weights or hedge algorithm is the most well known and most frequently
rediscovered algorithm in online optimization.

The problem it solves is usually described in the following language: we want to design
an algorithm that makes the best possible use of the advice coming from n self-described
experts. At each time step t = 1, 2, . . ., the algorithm has to decide with what probability

Notes for Lecture 11 2

to follow the advice of each of the experts, that is, the algorithm has to come up with a
probability distribution xt = (xt(1), . . . , xt(n)) where xt(i) ≥ 0 and

∑n
i=1 xt(i) = 1. After

the algorithm makes this choice, it is revealed that following the advice of expert i at time
t leads to loss `t(i), so that the expected loss of the algorithm at time t is

∑n
i=1 xt(i)`t(i).

A loss can be negative, in which case its absolute value can be interpreted as a profit.
After T steps, the algorithm “regrets” that it did not just always follow the advice of

the expert that, with hindsight, was the best one, so that the regret of the algorithm after
T steps is

RegretT =

(
T∑
t=1

n∑
i=1

xt(i)`t(i)

)
−

(
min

i=1,...,n

T∑
t=1

`t(i)

)
This corresponds to the instantiation of the framework we described in the previous post

to the special case in which the set of feasible solutions K is the set ∆ ⊆ Rn of probability
distributions over the sample space {1, . . . , n} and in which the loss functions ft(x) are
linear functions of the form ft(x) =

∑
i x(i)`t(i). In order to bound the regret, we also have

to bound the “magnitude” of the loss functions, so in the following we will assume that for
all t and all i we have |`t(i)| ≤ 1, and otherwise we can scale everything by a known upper
bound on maxt,i |`t|.

We now describe the algorithm.
The algorithm maintains at each step t a vector of weights wt = (wt(1), . . . , wt(n)) which

is initialized as w1 := (1, . . . , 1). The algorithm performs the following operations at time
t:

• wt(i) := wt−1(i) · e−β`t−1(i)

• xt(i) :=
wt(i)∑n
j=1wt(j)

That is, the weight of expert i at time t is e−β
∑t−1

k=1 `k(i), and the probability xt(i) of
following the advice of expert i at time t is proportional to the weight. The parameter β > 0
is hardwired into the algorithm and we will optimize it later. Note that the algorithm gives
higher weight to experts that produced small losses (or negative losses of large absolute
value) in the past, and thus puts higher probability on such experts.

We will prove the following bound.

Theorem 1
Assuming that for all t and i we have |`t(i)| ≤ 1, for every 0 < β < 1/2, after T steps the
multiplicative weight algorithm experiences a regret that is always bounded as

RegretT ≤ β
T∑
t=1

n∑
i=1

xt(i)`
2
t (i) +

lnn

β
≤ βT +

lnn

β

In particular, if T > 4 lnn, by setting β =
√

lnn
T we achieve a regret bound

RegretT ≤ 2
√
T lnn

Notes for Lecture 11 3

We will start by giving a short proof of the above theorem.
For each time step t, define the quantity

Wt :=
n∑
i=1

wt(i) .

We want to prove that, roughly speaking, the only way for an adversary to make the
algorithm incur a large loss is to produce a sequence of loss functions such that even the
best expert incurs a large loss. The proof will work by showing that if the algorithm incurs
a large loss after T steps, then WT+1 is small, and that if WT+1 is small, then even the best
expert incurs a large loss.

Let us define

L∗ = min
i=1,...,n

T∑
t=1

`t(i)

to be the loss of the best expert. Then we have

Lemma 2 (If WT+1 is small, then L∗ is large)

WT+1 ≥ e−βL
∗

Proof: Let j be an index such that L∗ =
∑T

t=1 `t(j). Then we have

WT+1 =
n∑
i=1

e−β
∑T

t=1 `t(i) ≥ e−β
∑T

t=1 `t(j) = e−βL
∗

2

Lemma 3 (If the loss of the algorithm is large then WT+1 is small)

WT+1 ≤ n
n∏
t=1

(1− β〈xt, `t〉+ β2〈xt, `2t 〉)

where `2t is the vector whose i-th coordinate is (`t(i))
2

Proof: Since we know that W1 = n, it is enough to prove that, for every t = 1, . . . , T , we
have

Wt+1 ≤ (1− β〈xt, `t〉+ β2〈xt, `2t 〉) ·Wt (1)

And we see that
Wt+1

Wt
=

n∑
i=1

wt+1(i)

Wt

=

n∑
i=1

wt(i) · e−β`t(i)

Wt

=
n∑
i=1

xt(i) · e−β`t(i)

Notes for Lecture 11 4

≤
n∑
i=1

xt(i) · (1− β`t(i) + β2`2t (i))

= 1− β〈xt, `t〉+ β2〈`2t , xt〉

where we used the definitions of our quantities and the fact that e−z ≤ 1 − z + z2 for
|z| ≤ 1/2. 2

Using the fact that 1− z ≤ e−z for all |z| ≤ 1, the above lemmas can be restated as

lnWT+1 ≤ lnn−

(
T∑
t=1

β〈`t, xt〉

)
+

(
T∑
t=1

β2〈`2txt〉

)

and
lnWT+1 ≥ −βL∗

which together imply (
T∑
t=1

〈`t, xt〉

)
− L∗ ≤ lnn

β
+ β

T∑
t=1

〈`2t , xt〉

as desired.
Personally, I find all of the above very unsatisfactory, because both the algorithm and

the analysis, but especially the analysis, seem to come out of nowhere. In fact, I never felt
that I actually understood this analysis until I saw it presented as a special case of the
Follow The Regularized Leader framework that we will discuss in the next lecture. (We will
actually prove a slightly weaker bound, but with a much more satisfying proof.)

Here is, however, a story of how a statistical physicist might have invented the algorithm
and might have come up with the analysis. Let’s call the loss caused by expert i after t− 1
steps the energy of expert i at time t:

Et(i) =

t−1∑
k=1

`k(i)

Note that we have defined it in such a way that the algorithm knows Et(i) at time t. Our
offline optimum is the energy of the lowest energy expert at time T + 1, that, is, the energy
of the ground state at time T + 1. When we have a collection of numbers Et(1), . . . , Et(n),
a nice lower bound to their minimum is

min
i
Et(i) ≥ −

1

β
ln

n∑
i=1

e−βEt(i)

which is true for every β > 0. The right-hand side above is the free energy at temperature
1
β at time t. This seems like the kind of expression that we could use to bound the offline
optimum, so let’s give it a name

Φt := − 1

β
ln

n∑
i=1

e−βEt(i)

Notes for Lecture 11 5

In terms of coming up with an algorithm, all that we have got to work with at time t are
the losses of the experts at times 1, . . . , t − 1. If the adversary chooses to make one of
the experts consistently much better than the others, it is clear that, in order to get any
reasonable regret bound, the algorithm will have to put much of the probability mass in
most of the steps on that expert. This suggests that the xt should put higher probability on
experts that have done well in the first t− 1 steps, that is xt should put higher probability
on “lower-energy” experts. When we have a system in which, at time t, state i has energy
Et(i), a standard distribution that puts higher probability on lower energy states is the
Gibbs distribution at temperature 1/β, defined as

xt(i) =
e−βEt(i)∑
j e
−βEt(j)

where the denominator above is also called the partition function at time t

Zt :=
n∑
j=1

e−βEt(j)

So far we have “rediscovered” our multiplicative weights algorithm, and the quantity Wt

that we had in our analysis gets interpreted as the partition function Zt. The fact that
ΦT+1 bounds the offline optimum suggests that we should use Φt as a potential function,
and aim for an analysis involving a telescoping sum. Indeed some manipulations (the same
as in the short proof above, but which are now more mechanical) give that the loss of the
algorithm at time t is

〈xt, `t〉 ≤ Φt+1 − Φt + 〈xt, `2t 〉

which telescopes to give

T∑
t=1

〈xt, `t〉 ≤ ΦT+1 − Φ1 +

T∑
t=1

〈xt, `2t 〉

Recalling that

Φ1 = − 1

β
lnn

and

ΦT+1 ≤ min
j=1,...,n

T∑
t=1

`t(j)

we have again (
T∑
t=1

〈xt, `t〉

)
−

(
min

j=1,...,n

T∑
t=1

`t(j)

)
≤ lnn

β
+

T∑
t=1

〈xt, `2t 〉

