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We begin to present reductions from 3SAT to several problems.

1 Independent Set

Given an undirected non-weighted graph G = (V,E), an independent set is a subset
I ⊆ V of the vertices such that no two vertices of I are adjacent.

We will be interested in the following optimization problem: given a graph, find a
largest independent set. We have seen that this problem is solvable in polynomial
time in trees using dynamic programming. In the general case, unfortunately, it is
much harder.

The problem models the execution of conflicting tasks, it is related to the construction
of error-correcting codes, and it is a special case of more interesting problems. We
are going to prove that it is not solvable in polynomial time unless P = NP.

First of all, we need to formulate it as a search problem:

• Given a graph G and an integer k, find an independent set in G with at least k
vertices, if it exists.

It is easy to see that the problem is in NP. We have to see that it is NP-hard. We
will reduce 3SAT to Maximum Independent Set.

Starting from a formula φ with n variables x1, . . . , xn and m clauses, we generate a
graph Gφ with 3m vertices, and we show that the graph has an independent set with
at least m vertices if and only if the formula is satisfiable, and that it is possible
to map satisfying assignments back to independent sets of size at least m. (In fact
we show that the size of the largest independent set in Gφ is equal to the maximum
number of clauses of φ that can be simultaneously satisfied. — This is more than
what is required to prove the NP-completeness of the problem)

The graph Gφ has a triangle for every clause in φ. The vertices in the triangle
correspond to the three literals of the clause.

Vertices in different triangles are joined by an edge iff they correspond to two literals
that are one the complement of the other. In Figure ?? we see the graph resulting
by applying the reduction to the following formula:

(x1 ∨ x̄5 ∨ x̄3) ∧ (x̄1 ∨ x3 ∨ x4) ∧ (x3 ∨ x2 ∨ x4)
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Figure 1: The reduction from 3SAT to Independent Set.

To prove the correctness of the reduction, we need to show that:

• If φ is satisfiable, then there is an independent set in Gφ with at least m vertices.

• If there is an independent set in G with at least m vertices, then φ is satisfiable.

From Satisfying Assignment to Independent Set. Suppose we have an assign-
ment of Boolean values to the variables x1, . . . , xn of φ such that all the clauses of φ
are satisfied. This means that for every clause, at least on of its literals is satisfied
by the assignment. We construct an independent set as follows: for every triangle
we pick a node that corresponds to a satisfied literal (we break ties arbitrarily). It
is impossible that two such nodes are adjacent, since only nodes that corresponds
to a literal and its negation are adjacent; and they cannot be both satisfied by the
assignment.

From Independent Set to Satisfying Assignment. Suppose we have an inde-
pendent set I with m vertices. We better have exactly one vertex in I for every
triangle. (Two vertices in the same triangle are always adjacent.) Let us fix an as-
signment that satisfies all the literals that correspond to vertices of I. (Assign values
to the other variables arbitrarily.) This is a consistent rule to generate an assignment,
because we cannot have a literal and its negation in the independent set). Finally,
we note how every clause is satisfied by this assignment.

Wrapping up:

• We showed a reduction φ → (Gφ,m) that given an instance of 3SAT produces
an instance of the decision version of Maximum Independent Set.
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• We have the property that φ is satisfiable (answer YES for the 3SAT problem)
if and only if Gφ has an independent set of size at least m, and how to translate
back a satisfying assignment to an independent set of size at least m.

• We knew 3SAT is NP-hard.

• Then also Max Independent Set is NP-hard; and so also NP-complete.

2 Subset Sum

The Subset Sum problem is defined as follows:

• Given a sequence of integers a1, . . . , an and a parameter k,

• Find a subset of the integers whose sum is exactly k. Formally, find a subset
I ⊆ {1, . . . , n} such that

∑
i∈I ai = k.

Subset Sum is a true search problem, not an optimization problem forced to become
a search problem. It is easy to see that Subset Sum is in NP.

We prove that Subset Sum is NP-complete by reduction from Independent Set. We
have to proceed as follows:

• Start from a graph G and a parameter k.

• Create a sequence of integers and a parameter k′.

• Prove that the graph has vertex cover with k vertices iff there is a subset of the
integers that sum to k′.

Let then G = (V,E) be our input graph with n vertices, and let us assume for
simplicity that V = {1, . . . , n}, and let k be the parameter of the independent set
problem.

We define integers a1, . . . , an, one for every vertex; and also integers b(i,j), one for
every edge (i, j) ∈ E; and finally a parameter k′. We will define the integers ai and
b(i,j) so that if we have a subset of the ai and the b(i,j) that sums to k′, then: the subset
of the ai corresponds to an independent set I in the graph; and the subset of the b(i,j)
corresponds to the edges in the graph that are not touched by I. Furthermore the
construction will force C to be of size k.

How do we define the integers in the subset sum instance so that the above properties
hold? We represent the integers in a matrix. Each integer is a row, and the row
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should be seen as the base-10 (but it would also work in base-4) representation of the
integer, with |E|+ 1 digits.

The first column of the matrix (the “most significant digit” of each integer) is a special
one. It contains 1 for the ais and 0 for the b(i,j)s.

Then there is a column (or digit) for every edge. The column (i, j) has a 1 in ai, aj
and b(i,j), and all 0s elsewhere.

The parameter k′ is defined as

k′ := k · 4|E| +
|E|−1∑
j=0

1 · 4i

This completes the description of the reduction. Let us now proceed to analyze it.

From Independent Sets to Subsets Suppose there is an independent set I of
size k in G. Then we choose all the integers ai such that i ∈ I and all the integers
b(i,j) such that neither of i and j are in I. Then, when we sum these integers, we have
a 1 in all digits except for the most significant one. In the most significant digit, we
are summing the digit 1 a number of times equal to |I| = k. The sum of the integers
is thus k′.

From Subsets to Covers Suppose we find a subset I ⊆ V and E ′ ⊆ E such that

∑
i∈I

ai +
∑

(i,j)∈E′

b(i,j) = k′

First note that we never have a carry in the |E| less significant digits: operations are
in base 10 and there are at most 3 ones in every column. This means that for every
edge (i, j) I must not contain both i and j. So I is a cover. The “most significant
digit” (technically, the quotient of k′ divided by 4|E|) is k, so I contains k elements.
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