
Bocconi University— 30540: Computer Science II Handout TS
Fabrizio Iozzi and Luca Trevisan February 16, 2023

Topological Sort of a Directed Acyclic Graph

These notes contain some material that was discussed in class and that is not in the
book in the same form.

If G = (V,E) is a directed graph, we say that an ordered list L of the vertices V is a
topological sort of the graph G if, for every edge (u, v) ∈ E, the vertex u comes before
the vertex v in L.

For example, the list b, c, a, d, e is a topological sort of the graph below.

a

b

c

d

e

The list a, b, c, d, e is not a topological sort of the graph above, because the edges
(b, a) and (c, a) do not satisfy the required property.

If the vertices of a graph represent tasks, and each edge (u, v) represents the informa-
tion that task u must be completed before task v can be started, then a topological
sort is a possible order in which to perform the tasks so that all the precedence
constraints are satisfied.

A cycle in a directed graph G = (V,E) is a sequence of vertices v1, . . . , vk, v1 such
that all the edges (vi, vi+1) are in E for i = 1, . . . , k − 1, and the edge (vk, v1) is also
in E. Equivalently, a cycle is a path v1, v2, . . . , vk, v1 such that the first and the last
vertex of the path are the same.

Theorem 1 If a directed graph G contains a cycle, then G cannot have a topological
sort.

1

Proof: Suppose toward a contradiction that G = (V,E) is a directed graph, that
v1, . . . , vk, v1 is a cycle in G and that L is a topological sort in G. Let v be the first
vertex of the cycle to appear in L. Then v has a predecessor u in the cycle such
that (u, v) ∈ E (the predecessor of v1 is vk, and the predecessor of vi+1 is vi for
i = 1, . . . , k − 1); but this is a contradiction because (u, v) is an edge and u comes
after v in L. �

Now we want to argue that the converse also holds.

Theorem 2 If a directed graph G does not contain any cycle, then G has a topological
sort.

Note on terminology: a directed graph that does not contain any cycles is called a
directed acyclic graph, abbreviated DAG.

To prove Theorem 2, we describe an algorithm for finding a topological sort, and we
will argue that it works on all graphs that are acyclic.

Given a graph G = (V,E), the algorithm is:

• L = empty list

• while V is not empty:

– let v be a vertex with zero incoming edges

– L = L + v

– remove v from V , and remove all the edges incident on v from E

• return L

The idea of the algorithm is that if a vertex has no incoming edges, then it is correct
to put it at the beginning of a topological sort, because this will satisfy all edges
incident on the vertex. Having done that, we can remove the vertex and the edges
incident on it from the graph, and continue with the rest of the graph.

If the algorithm terminates, then it does terminate with a valid topological sort.

The only way the algorithm fails to terminate is if, at some point, the algorithm is
left with a graph in which every vertex has at least one incoming edge.

Here we make the following observation.

Lemma 3 If G = (V,E) is a directed graph in which every graph has at least one
incoming edge, then G contains a cycle.

2

Proof: Consider any vertex v in V , and call it vn+1, where n = |V |. We know that
there is at least one edge (x, vn+1) that goes into vn+1. Call the other endpoint of this
edge vn. Now vn has at least one incoming edge, call the other endpoint of this edge
vn−1 and so on. Now we have a sequence of vertices

v1, v2, . . . , vn, vn+1

such that for all i = 1, . . . , n the edge (vi, vi+1) is in E. By the pigeonhole principle,
there must be some repeated vertex in the sequence, so for some i < j we must have
vi = vj. Now the sequence

vi, vi+1, . . . , vj

is a cycle. �

Applying the lemma to each phase of the algorithm, we have that if the initial graph
is acyclic then all the graphs that we obtain after deleting vertices and edges are
also acyclic, and so we can always find a vertex of indegree zero. This proves that
the algorithm always finds a topological sort when given an undirected acyclic graph
and so, in particular, all undirected acyclic graphs admit a topological sort, proving
Theorem 2.

Now we bring the discussion back to DFS, and we prove that if G is a directed
acyclic graph, and L is a list of vertices in the reverse order in which explore(·)
completes its execution, then L is a topological sort of G. This means that we can
find a topological sort in the same running time O(|V |+ |E|) of DFS, and this is also
teaches us something about DFS that will later have other applications.

We refer to the following version of DFS in which we keep a list of nodes whose
explore(·) procedure has terminated:

Global variable: Boolean array visited

Global variable: list L of vertices

explore(G,v)

visited[v] = True

for each node w such that (v,w) is an edge of G:

if not visited[w]:

explore(G,w)

L = v + L

DFS(G)

initialize visited[v] = False for each vertex v of G

L = empty list

for each vertex v of G:

if not visited[v]:

explore(G,v)

3

We want to say that if G is acyclic, then, at the end of the execution of DFS(G),
the list L is a topological sort of G. This is equivalent to the following statement.

Theorem 4 Let G = (V,E) be an acyclic directed graph. If we run DFS(G), then,
for every edge (u, v) ∈ E we have that the call to explore(G, u) terminates after the
call to explore(G, v).

Proof: Consider the state of the algorithm (meaning, which vertices are visited and
which recursive calls are on hold) when explore(G, u) is called. At that point, each
vertex x can be in one of three states:

• not yet visited

• visited, but not yet on the list L, because the call to explore(G, x) is on hold

• visited and on the list L

Note that if a vertex x is of the second type, then there is a path from x to u,
because when explore(G, x) makes a recursive call, it calls explore(G, y) for some
vertex y such that (x, y) exists, and then explore(G, y) can only make calls of the
type explore(G,w) for some vertex w such that (y, w) is an edge, and so on, meaning
that all the call to explore(G, ·) that are on hold when explore(G, u) is called involve
vertices from which u is reachable.

There can, however, be no path from v to u, otherwise there would be a cycle in G.
This means that when explore(G, u) is called, the vertex v is either not yet visited or
is already on the list L.

If v is not visited, then explore(G, v) will be called inside the execution of explore(G, u),
and so explore(G, u) is on hold during the execution of explore(G, v), and explore(G, u)
terminates after explore(G, v) terminates.

If v is already on the list, then it means that explore(G, v) has already terminated
at the time that explore(G, u) is called, so certainly explore(G, u) terminates after
explore(G, v) terminates. �

4

