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u;€V'. To see that this truth assignment satisfies each of the clauses c;€C,

onsnder the three edges in E;'. Only two of those edges can be covered by
vertices from V' N V', so one of them must be covered by a vertex from
some V; that belongs to V'. But that implies that the corresponding literal,
either u; or u;, from clause c; is true under the truth assignment ¢, and
hence clause c; is satisfied by ¢. Because this holds for every c;€C, it fol-
lows that ¢ is a satisfying truth assignment for C.

Conversely, suppose that t: U—{T, F} is a satisfying truth assignment
for C. The corresponding vertex cover V' includes one vertex from each
T; and two vertices from each S;,. The vertex from 7; in V'is u; if
t(u)=T and is u, if t(u)=F. ThlS ensures that at least one of the three
edges from each set E;' is covered, because ¢ satisfies each clause c;.
Therefore we need only include in V' the endpoints from S; of the other
two edges in E;' (which may or may not also be covered by vertices from

truth-setting components), and this gives the desired vertex cover. ®

3.1.4 HAMILTONIAN CIRCUIT

In Chapter 2, we saw that the HAMILTONIAN CIRCUIT problem can
be transformed to the TRAVELING SALESMAN decision problem, so the
NP-completeness of the latter problem will follow immediately once HC has
been proved NP-complete. At the end of the proof we note several variants
of HC whose NP-completeness also follows more or less directly from that

of HC.
For convenience in what follows, whenever <vy,v,,...,v,> is a

Hamiltonian circuit, we shall refer to {v;,v;;,}, 1<i<n, and {v,,v;} as the
edges ‘‘in’’ that circuit. Our transformation is a combination of two
transformations from [Karp, 1972], also described in [Liu and Geldmacher,

1978].

Theorem 3.4 HAMILTONIAN CIRCUIT is NP-complete

Proof: 1t is easy to see that HC € NP, because a nondeterministic algorithm
need only guess an ordering of the vertices and check in polynomial time
that all the required edges belong to the edge set of the given graph.

We transform VERTEX COVER to HC. Let an arbitrary instance of
VC be given by the graph G = (V,E) and the positive integer K < |V]|. We
must construct a graph G'= (V',E') such that G' has a Hamiltonian circuit
if and only if G' has a vertex cover of size K or less.

Once more our construction can be viewed in terms of components
connected together by communication links. First, the graph G' has K
“‘selector’’ vertices aj,a,, . . ., ag, which will be used to select K vertices
from the vertex set V for G. Second, for each edge in E, G' contains a
““cover-testing”’ component that will be used to ensure that at least one
endpoint of that edge is among the selected K vertices. The component for
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e=1{u,v} € E is illustrated in Figure 3.4. It has 12 vertices,
V, = {(u,e,i),(v,e,i):1<i<6}
and 14 edges,
E, = {{(u,e,i),(u,e,i+1)},{(v,e,i),(v,e,i+1)}:1<i<5}
U {{(u,e,3),n,,D), {(v,€,3), (u,e,D}}
U {{(u,e,6),(v,e,4)},{(v,e,6),(u,e,4)}}

(u,e,1) (v,e,1)
(u,e,2) '\ ¢ (v,e,2)
(u,e,3) \ (v,e,3)
(u,e,4) (v,e,4)
(u,e.5) ;\ ¢ (v,e,5)

(u,e,6) \' (v,e,6)

Figure 3.4 Cover-testing component for edge e ={u,v} used in transforming
VERTEX COVER to HAMILTONIAN CIRCUIT.

In the completed construction, the only vertices from this cover-testing
component that will be involved in any additional edges are
(u,e,1), (v,e,1), (u,e,6), and (v,e,6). This will imply, as the reader may
readily verify, that any Hamiltonian circuit of G' will have to meet the
edges in E, in exactly one of the three configurations shown in Figure 3.5.
Thus, for example, if the circuit ‘“‘enters’ this component at (u,e,1), it will
have to ‘“‘exit” at (u,e,6) and visit either all 12 vertices in the component
or just the 6 vertices (u, e, i), 1<i<6.

Additional edges in our overall construction will serve to join pairs of
cover-testing components or to join a cover-testing component to a selector
vertex. For each vertex v € V, let the edges incident on v be ordered (arbi-
trarily) as e,(1}, €121, - - - » @vldeg(v)]» Where deg(v) denotes the degree of v in
G, that is, the number of edges incident on v. All the cover-testing com-
ponents corresponding to these edges (having v as endpoint) are joined
together by the following connecting edges:

Ev' . {{(V,ev[,‘],6),(v,ev[i+1],1)]: 1< l<deg(V)}

As shown in Figure 3.6, this creates a single path in G' that includes exactly
those vertices (x,y,z) having x =v.
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Figure 3.5 The three possible configurations of a Hamiltonian circuit within the
cover-testing component for edge e = {u,v}, corresponding to the cases
in which (a) u belongs to the cover but v does not, (b) both u and v
belong to the cover, and (c) v belongs to the cover but u does not.

The final connecting edges in G’ join the first and last vertices from
each of these paths to every one of the selector vertices ay,a;, ..., ag.
These edges are specified as follows:

EH = {[ai,(v-,ev[l]')l)]’{ai,(vsev[deg(v)],6)}: 1<I<K, yE V}
The completed graph G' = (V',E") has

V'={a:1<i<K}U (Y V)

e€E
and
E' = (UE,,’)U(UEJ)UE"
e€E veEV
It is not hard to see that G' can be constructed from G and K in polyno-
mial time.

We claim that G' has a Hamiltonian circuit if and only if G has a ver-
tex cover of size K or less. Suppose <vy,v,, ..., v,>, where n = | V|, is
a Hamiltonian circuit for G'. Consider any portion of this circuit that
begins at a vertex in the set {aja,,...,ax}), ends at a vertex in
{aj,a,, ..., ax}, and that encounters no such vertex internally. Because of

the previously mentioned restrictions on the way in which a Hamiltonian
circuit can pass through a cover-testing component, this portion of the cir-
cuit must pass through a set of cover-testing components corresponding to
exactly those edges from E that are incident on some one particular vertex
vE€V. Each of the cover-testing components is traversed in one of the
modes (a), (b), or (c) of Figure 3.5, and no vertex from any other cover-
testing component is encountered. Thus the K vertices from
{aj,ay, ..., ax} divide the Hamiltonian circuit into K paths, each path
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(v,e,(37,1) .
(v, €, (deg(n)1-1)

(V’ev[deg(v)]’6)

Figure 3.6 Path joining all the cover-testing components for edges from E having
vertex v as an endpoint.

corresponding to a distinct vertex v€ V. Since the Hamiltonian circuit must
include all vertices from every one of the cover-testing components, and
since vertices from the cover-testing component for edge e€E can be
traversed only by a path corresponding to an endpoint of e, every edge in E
must have at least one endpoint among those K selected vertices. There-
fore, this set of K vertices forms the desired vertex cover for G.
Conversely, suppose V*CV is a vertex cover for G with |V*| < K.
We can assume that | V*| =K since additional vertices from V can always
be added and we will still have a vertex cover. Let the elements of V* be
labeled as vy,v,, ..., vk. The following edges are chosen to be “‘in’’ the
Hamiltonian circuit for G'. From the cover-testing component representing
each edge’e ={u,v} € E, choose the edges specified in Figure 3.5(a), (b), or
(c) depending on whether {u,v} N V* equals, respectively, {u}, {u,v}, or
(v]. One of these three possibilities must hold since V* is a vertex cover
for G. Next, choose all the edges in Ev", for 1<i<K. Finally, choose the

edges
[ql's(vi, evi[llal)}, 1<1<K
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{ai+la(via ev,[deg(v’.)]a 6)}, I<I<K
and
[ala(VKa evK[deg(vK)]’ 6)}

We leave to the reader the task of verifying that this set of edges actually
corresponds to a Hamiltonian circuit for G'. ®

Several variants of HAMILTONIAN CIRCUIT are also of interest.
The HAMILTONIAN PATH problem is the same as HC except that we
drop the requirement that the first and last vertices in the sequence be
joined by an edge. HAMILTONIAN PATH BETWEEN TWO POINTS is
the same as HAMILTONIAN PATH, except that two vertices v and v are
specified as part of each instance, and we are asked whether G contains a
Hamiltonian path beginning with # and ending with v. Both of these prob-
lems can be proved NP-complete using the following simple modification of
the transformation just used for HC. We simply modify the graph G’
obtained at the end of the construction as follows: add three new vertices,
ag, ag+1, and agx4y, add the two edges {ag,a;} and {ax4i,ak4a), and
replace each edge of the form {a},(v, €,(zee (1)1, 6)} bY {ak+1,(V, €, 1deg (1)1, O)}:
The two specified vertices for the latter variation of HC are ag and ag,.

All three Hamiltonian problems mentioned so far also remain NP-
complete if we replace the undirected graph G by a directed graph and
replace the undirected Hamiltonian circuit or path by a directed Hamiltonian
circuit or path. Recall that a directed graph G = (V,A4) consists of a vertex
set V and a set of ordered pairs of vertices called arcs. A Hamiltonian path
in a directed graph G =(V,A4) is an ordering of V as <vy,vy,...,v,>,
where n=|V]|, such that (v;,v,4;) € 4 for 1<i<n. A Hamiltonian circuit
has the additional requirement that (v,,v;) € 4. Each of the three
undirected Hamiltonian problems can be transformed to its directed coun-
terpart simply by replacing each edge {u,v} in the given undirected graph by
the two arcs (u,v) and (v,u). In essence, the undirected versions are
merely special cases of their directed counterparts.

3.1.5 PARTITION

In this section we consider the last of our six basic NP-complete prob-
lems, the PARTITION problem. It is particularly useful for proving NP-
completeness results for problems involving numerical parameters, such as
lengths, weights, costs, capacities, etc.

Theorem 3.5 PARTITION is NP-complete o
Proof: It is easy to see that PARTITION € NP, since a nondetermn}nsth al-
gorithm need only guess a subset A’ of A and check in polynomial time
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