Bocconi University— 30540: Computer Science 11 Handout NP1
Fabrizio lozzi and Luca Trevisan April 26, 2022

1 Tractable and Intractable Problems

So far, almost all of the problems that we have studied have had complexities that are
polynomial, i.e. such problems admitted algorithms of running time O(n*) for some
fixed value of k, where n is the size of the input. Typically k£ has been small, 3 or
less. We will let P denote the class of all problems whose solution can be computed
in polynomial time, i.e. O(n*) for some fixed k, whether it is 3, 100, or something
else. We consider all such problems efficiently solvable, or tractable. Notice that this
is a very relaxed definition of tractability (an algorithm of running time O(n'%) is
not efficient in practice), but our goal in this lecture and the next few ones is to
understand which problems are intractable, a notion that we formalize as not being
solvable in polynomial time. Notice how not being in P is certainly a strong way of
being intractable.

We will focus on a class of problems, called the NP-complete problems, which is a class
of very diverse problems, that share the following properties: we only know how to
solve those problems in time much larger than polynomial, namely ezponential time,
that is 2°") for some k; and if we could solve one NP-complete problem in polynomial
time, then there is a way to solve every NP-complete problem in polynomial time.

There are two reasons to study NP-complete problems. The practical one is that
if you recognize that your problem of interest is NP-complete, then you have three
choices:

1. you can use a known algorithm for it, and accept that it will take a long time
to solve if n is large;

2. you can settle for approximating the solution, e.g. finding a nearly best solution
rather than the optimum; or

3. you can change your problem formulation so that it is in P rather than being
NP-complete, for example by restricting to work only on a subset of simpler
problems.

Most of this material will concentrate on recognizing NP-complete problems (of which
there are a large number, and which are often only slightly different from other,
familiar, problems in P).



The other reason to study NP-completeness is that one of the most famous open
problem in computer science concerns it. We stated above that “we only know how
to solve NP-complete problems in time much larger than polynomial” not that we
have proven that NP-complete problems require exponential time. Indeed, this is the
million dollar question,' one of the most famous open problems in computer science,
the question whether “P = NP?” or whether the class of NP-complete problems have
polynomial time solutions. After decades of research, everyone believes that P#NP,
i.e. that no polynomial-time solutions for these very hard problems exist. But no one
has proven it. If you do, you will be very famous, and have not quite enough money
to buy a one-bedroom condo in San Francisco.

So far we have not actually defined what NP-complete problems are. This will take
some time to do carefully, but we can sketch it here. First we define the larger class of
problems called NP: these are the problems where, if someone hands you a potential
solution, then you can check whether it is a solution in polynomial time. For example,
suppose the problem is to answer the question “Does a graph have a simple path of
length [V| — 177, If someone hands you a path, i.e. a sequence of vertices, and you
can check whether this sequence of vertices is indeed a path and that it contains all
vertices in polynomial time, then the problem is in NP. It should be intuitive that
any problem in P is also in NP, because are all familiar with the fact that checking
the validity of a solution is easier than coming up with a solution. For example, it is
easier to get jokes than to be a comedian, it is easier to have average taste in books
than to write a best-seller, it is easier to read a textbook in a math or theory course
than to come up with the proofs of all the theorems by yourself. For all this reasons
(and more technical ones) people believe that PNP, although nobody has any clue
how to prove it. (But once it will be proved, it will probably not be too hard to
understand the proof.)

The NP-complete problems have the interesting property that if you can solve any one
of them in polynomial time, then you can solve every problem in NP in polynomial
time. In other words, they are at least as hard as any other problem in NP; this is why
they are called complete. Thus, if you could show that any one of the NP-complete
problems that we will study cannot be solved in polynomial time, then you will have
not only shown that P#NP, but also that none of the NP-compete problems can be
solved in polynomial time. Conversely, if you find a polynomial-time algorithm for
just one NP-complete problem, you will have shown that P=NP.2

IThis is not a figure of speech. See http://www.claymath.org/prizeproblems.

2Which still entitles you to the million dollars, although the sweeping ability to min cryptocoins,
and to break every cryptographic protocol and to hold the world banking and trading systems by
ransom might end up being even more profitable.



2 Search Problems

In these lectures, we are interested in proving things about computational problems,
and so we need to provide precise definitions of what is a problem for which we want
to devise an algorithm.

In the following, for a given input I, we will be interested in referring to the size or
length of I, that we will denote by len([). This can be thought of as the length, in
bits, of a binary representation of the data in I.

Very generally, we say that a search problem is a computational problem defined by
a property (a Boolean function) V'(+,-), such that given an input I our goal is to find
a solution S such that V(I,S) = True, or to determine that no such S exists. Here
“V7 stands for walidity, since defining V' means defining which solutions are valid
outputs for a given input.

We say that a search problem A is an NP search problem if the property V (1, 5) that
defines A is computable in time polynomial in the size of I. Notice that we ask the
running time to be bounded by len(I), and in particular it must be true that the
length of valid solutions S must themselves be bounded by a polynomial in len([I).

In some cases, we will be interested in optimization problems, where the goal is to find
a solution that maximizes or minimizes a certain cost function, and such problems
may not immediately fit the pattern of being NP search problems. In those cases,
there are however NP search problems that are computationally equivalent to the
optimization problem, in the sense that an algorithm for the search problems can
be easily modified, with a small increase in running time, to an algorithm for the
optimization problem, and vise versa. For example, consider the Traveling Salesman
Problem (TSP) on a graph with nonnegative integer edge weights. There are two
similar ways to state it:

1. Given a weighted graph, what is the minimum length cycle that visits each node
exactly once? (If no such cycle exists, the minimum length is defined to be c0.)

2. Given a weighted graph and an integer K, find a cycle that visits each node
exactly once, with total weight at most K, if such a cycle exists.

Question 1 above seems more general than Question 2, because if you could answer
Question 1 and find the minimum length cycle, you could just compare its length
to K to answer Question 2. But an algorithm that solves Question 2 can be easily
modified to an algorithm that solves Question 1 by doing a binary search on the
parameter K. Note that Question 2 defines an NP search problem, because given a
graph G with weights on the edges, a cycle C, and an integer K, it is easy to check
in polynomial time that C is indeed a cycle in GG, that C touches each vertex of G
precisely once, and that the sum of the weights of the edges of C' is at most K.



3 Reductions

Let A and B be two search problems. A reduction from A to B is a polynomial-time
algorithm f which transforms inputs of A to equivalent inputs of B and a polynomial
time algorithm ¢ that transforms solutions for the latter to solutions for the former.
That is, given an input z to problem A, f(x) is an imput to problem B, such that
if y is valid solution for instance f(z) of problem B, then g(x,y) is a valid solution
for instance x of problem A, and if there is no valid solution to f(x) then there is no
valid solution for z.

Notice that this implies that if Algg is a correct algorithm for solving problem B,
then the algorithm x — g(z, Algg(f(z))) is a correct algorithm for solving problem
A. Furthermore, if Algp runs in polynomial time, then so does g(z, Algp(f(+))).

If there is a reduction from A to B, then we write A < B, which reads “A reduces to
B”. We have proved the following important result.

Lemma 1 If A and B are two search problems such that A < B, and B is solvable
in polynomial time, then A is solvable in polynomial time.

We have seen many reductions so far, establishing that problems are easy (e.g., from
max-flow to linear programming). In this part of the class we shall use reductions
in a more sophisticated and counterintuitive context, in order to prove that certain
problems are hard. That is, if A < B, and A is intractable problem, that is, a problem
that does not admit any polynomial time algorithm, then B is also an intractable
problem that admits no polynomial time algorithm.

4 NP, NP-completeness

We call NP the set of all NP search problems and we call P the set of all NP search
problems that are solvable in polynomial time.

Note that it is common to associate to every NP search problem a decision problem,
that is a problem with a YES-NO answer, that is to determine whether a given input
has at least one valid solution. The standard definition of NP is the set of all decision
problems associated to NP search problems in the above way. In these notes we follow
the approach of the book, and we do not introduce decision problems. The two ways
of developing the theory are equivalent, but keep in mind this difference if you do
additional readings from other sources.

We say that a search problem A is NP-hard if for every N in NP, N is reducible
to A, and that a problem A is NP-complete if it is NP-hard and it is contained in
NP. As an exercise to understand the formal definitions, you can try to prove the



following simple fact, that is one of the fundamental reasons why NP-completeness is
interesting.

Lemma 2 [If A is NP-complete, then A is in P if and only if P=NP.

So now, if we are dealing with some problem A that we can prove to be NP-complete,
there are only two possibilities:

e A has no efficient algorithm.

e All the infinitely many problems in NP, including factoring and all conceivable
optimization problems are in P.

If P=NP, then, given the statement of a theorem, we can find a proof in time poly-
nomial in the number of pages that it takes to write the proof down.

If it was so easy to find proof, why do papers in mathematics journal have theorems
and proofs, instead of just having theorems. And why theorems that had reasonably
short proofs have been open questions for centuries? Why do newspapers publish
solutions for crossword puzzles? If P=NP, whatever exists can be found efficiently.
It is too bizarre to be true.

In conclusion, it is safe to assume P # NP, or at least that the contrary will not
be proved by anybody in the next decade, and it is really safe to assume that the
contrary will not be proved by us in the next month. So, if our short-term plan
involves finding an efficient algorithm for a certain problem, and the problem turns
out to be NP-hard, then we should change the plan.

5 Proving NP-completeness Results

In order to prove that an NP problem C' is NP-complete we need to exhibit infinitely
many reductions: we have to show that for every problem N in NP there is a reduc-
tion from N to C. In the next lecture, we will prove that a problem called CSAT
(abbreviation of Circuit Satisfiability) is NP-complete.

Once we have found an NP-complete problem, however, proving that other problems
are NP-complete becomes easier, since we now just need one more reduction.

Indeed, the following result clearly holds:

Lemma 3 If A reduces to B, and B reduces to C, then A reduces to C.



PRrROOF: Let fap and gga be the functions that define the reduction A < B and let
fec and gep be the functions that define the reduction B < C.

It now follows from the definition that the functions * — fpc(fap(z)) and y —
ga(z, gop(f(2),y)) are polynomial time computable functions that define a reduc-
tion from A to C. O

This immediately implies:

Lemma 4 Let C' be an NP-complete problem and A be a problem in NP. If we can
prove that C' reduces to A, then it follows that A is NP-complete.

Right now, literally thousands of problems are known to be NP-complete, and each
one (except for a few “root” problems like Circuit-SAT) has been proved NP-complete
by way of a single reduction from another problem previously proved to be NP-
complete. By the definition, all NP-complete problems reduce to each other, so the
body of work that lead to the proof of the currently known thousands of NP-complete
problems, actually implies millions of pairwise reductions between such problems.



