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More on Huffman’s Algorithm, Entropy, and Arith-

metic Coding

We provide additional details on the analysis of Huffman’s algorithm given in the
textbook, we give a lower bound to the encoding length obtained by Huffman’s algo-
rithm as a function of the frequencies, and we prove an asymptotically tight upper
bound by analysing arithmetic coding.

1 Huffman’s algorithm’s optimality

Given an “alphabet” of symbols V and a positive integer frequency f(v) for every
v ∈ V , we want to find a prefix-free way of mapping each symbol v ∈ V to a bit
string C(v) of length `(v), in such a way that we minimize the total encoding length∑

v∈V

f(v) · `(v)

A bit string s is a prefix of a bit string s′ if s′ is obtained by adding one or more bits
at the end of s. For example 010 is a prefix of 01001. A mapping is prefix-free if all
the encodings C(v) are different and none of them is a prefix of any other.

For example if V = {a, b, c, d}, then

C(a) = 0

C(b) = 10

C(c) = 110

C(d) = 111

is a prefix-free encoding, while

C(a) = 0

C(b) = 10

C(c) = 101

C(d) = 111
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is not prefix free because the encoding of b is a prefix of the encoding of c.

If all the encodings have the same length, then the mapping is always prefix-free. In a
fixed-length mapping, the length of the encoding of any element of V must be at least
log2 V , because if we use encodings of length ` we can represent at most 2` symbols.
This means that the total encoding length achieved with fixed-length mappings is at
least

dlog2 |V |e ·
∑
v

f(v)

With variable-length prefix-free mappings it is often possible to do better. As said
above, we are interested in finding a prefix-free mapping that minimizes the total
encoding length.

A prefix-free encoding of V can be represented as a binary tree in which each leaf is
associated with an element of V . Each node of the binary tree is labeled by a binary
string: the root is labeled with the empty string, and if s is the label of a node, then
its left child, if it exists, is labeled s0, and the right child, if it exists, is labeled s1.
The mapping defined by such a binary tree is to map each element v ∈ V to the
label of the leaf associated to v. Note that labelling is such that if a binary string s
is a prefix of a binary string s′, then the node labeled s′ is a descendant of the node
labeled s, so by associating elements of V to leaves we are guaranteed the prefix-free
property, because leaves have no descendants.

We first note that, in an optimal solution represented as a binary tree, every non-leaf
node has precisely two children. This is because if we had a node x with exactly
one child y, we could “merge” x and y, and all the symbols that are descendants of
y would have encodings one bit shorter than before, meaning that the original tree
could not be an optimal solution.

Our starting point in reasoning about optimality is the following lemma.

Lemma 1 Let V be a set of symbols, f(v) the frequency of symbol f(v), and let
v1, . . . , vn be a sorting of V such that f(v1) ≤ f(v2) ≤ f(v3) ≤ · · · ≤ f(vn), where
n = |V |.
Then there is an optimal solution to the prefix-free encoding problem in which v1 has
an encoding at least as long as that of any other symbol.

Proof: Consider any optimal solution C∗, in which each symbol v has length `(v).
If v1 is associated to a deepest leaf of C∗ there is nothing to prove. Otherwise, let x
be a symbol associated to a deepest leaf of C∗, and consider a new mapping C ′ that
is identical to C∗ except that we switched the encodings of x and of v1, and let us
call `′(v) the length of the encoding of each symbol v according to this new encoding.

Calling cost(C) the total encoding length of a mapping C, the difference between the

2



total encoding length in C∗ and the total encoding length in C ′ is

cost(C∗)− cost(C ′) =

(∑
v∈V

`(v)f(v)

)
−

(∑
v∈V

`(v)′f(v)

)
= `(v1)f(v1) + `(x)f(x)− `′(v1)f(v1)− `′(x)f(x)

= `(v1)f(v1) + `(x)f(x)− `(x)f(v1)− `(v1)f(x)

= (`(x)− `(v1)) · (f(x)− f(v1))

≥ 0

where we used the fact that the old and new encodings of all symbols are the same,
except for v1 and x, then we used the fact that the encoding lengths of x and v1 are
switched in the new encodings, then we used the distributivity property, and finally
we used that `(x) ≥ `(v1) and f(v1) ≤ f(x) because x was a symbol with longest
encoding and v1 was defined as a symbol of smallest frequency.

This means that cost(C ′) ≤ cost(C∗), but C∗ was assumed to be optimal so C ′ is also
optimal and we conclude that there is an optimal solution in which v1 is a symbol
with longest encoding. �

Lemma 2 Let V be a set of symbols, f(v) the frequency of symbol f(v), and let
v1, . . . , vn be a sorting of V such that f(v1) ≤ f(v2) ≤ f(v3) ≤ · · · ≤ f(vn), where
n = |V |.
Then there is an optimal solution to the prefix-free encoding problem in which v1 and
v2 are siblings and have an encoding at least as long as that of any other symbol.

Proof: From the previous lemma we know that there is an optimal solution C ′ such
that v1 is associated to a deepest leaf in the binary tree representation of the encoding
C ′. Since all internal nodes must have exactly two children, the leaf associated to v1
must have a sibling, and that sibling must also be a leaf (otherwise there would be a
symbol with a longer encoding than v1). If the symbol associated to that sibling leaf
is v2 then we are done. Suppose, otherwise, that it is some other symbol x. Then
we have f(v2) ≤ f(x) because of the definition of the sorted order and `(x) ≥ `(v2)
because `(x) = `(v1) and v1 is a symbol with longest encoding in C ′. So we can
switch x and v2 and, via the same reasoning of the previous lemma, observe that the
solution C ′′ that we obtain has total encoding length smaller than or equal to the
total encoding length of C ′, so that C ′′ is also an optimal solution, and v1 and v2 are
siblings in C ′′, and are symbols of biggest encoding length. �

Now comes the main observation: if we are given an instance V, f(·) of the minimum-
total-length prefix-free encoding problem, and v1, v2, . . . , vn is a sorted order of V
according to f , we can, without loss of generality, optimize among solutions in which
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v1 and v2 are siblings. Now, the problem of finding the optimal encoding in which
v1 and v2 are siblings can be transformed into an equivalent encoding problem over
n − 1 symbols. Once we explain how this works, it will become clear that we can
repeat this transformation several times until we are left with a problem involving
only two symbols, which is always optimally solved by encoding one symbol as 0 and
the other as 1.

The transformation is as follows: we take out v1 and v2 from V , and replace them with
a new symbol z of frequency f(z) = f(v1)+f(v2). We do not make any change to the
other symbols. The claim is that if C ′ is an optimal mapping for this new instance
over the symbols z, v3, . . . , vm, and if we define a mapping C such that C(v1) = C ′(z)0,
C(v2) = C ′(z)1, C(vi) = C(vi) for i = 3, . . . , n, then C is optimal for our original
problem.

First of all, note that C is a valid prefix-free encoding of our original symbol set, and
if let cost(·) denote the total encoding length of a mapping we have

cost(C) = cost(C ′) + f(v1) + f(v2)

Now consider an optimal solution C∗ for our original symbol set, such that v1 and v2
are siblings in the binary tree defined by C∗ (by our previous lemma, we can assume
that such a C∗ exists). Define a possible solution C ′′ for the new problem, by letting
C ′′(z) be equal to the string associated to the parent of v1 and v2, and letting C ′′ be
equal to C on v3, . . . , vn. Then

cost(C ′′) = cost(C∗)− f(v1)− f(v2)

Putting things together we have

cost(C) = cost(C ′) + f(v1) + f(v2) ≤ cost(C ′′) + f(v1) + f(v2) = cost(C∗)

where we used the fact that C ′ is optimal for the new problem. This means that

cost(C) ≤ cost(C∗)

where C∗ is optimal for the original problem, and so C is also optimal for the original
problem, as claimed.

The algorithm at the end of section 5.2 of the book iteratively applies this transfor-
mation, and finds an optimal solution in time O(n log n).

2 Lower Bounds

We will make use of the following simple observation: the number of distinct bit
strings of length L is 2L, and the number of distinct bit strings of length ≤ L is

21 + 22 + · · ·+ 2L = 2L+1 − 2 < 2L+1
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This means, for example, that if we have an alphabet V that contains 2k symbols,
and we want to find a compression scheme for sequences of n elements of V , then,
no matter what encoding scheme we develop, there will be sequences in V n that map
to bit strings of length ≥ kn, because the number of bit strings of length ≤ kn − 1
is 2(kn−1)+1 − 2 < 2kn = |V n|, and so we do not have enough bit strings of length
≤ kn − 1 to provide distinct encodings for all sequences in V n. On the other hand,
we can construct a simple fixed-length encoding of the elements of V using a k-bit
string for every element of V , and so it is easy to encode every sequence in V n using
exactly kn bits.

Thus, from the point of view of worst-case encoding length, fixed-length encodings are
optimal, and an analysis of compressibility needs to be done from the point of view
of the average-case encoding length with respect to certain distributions of data, or
by making some assumptions on the frequencies with which the elements of V appear
in the sequence.

Even with an average-case analysis, however, compressibility is not always possible.
In particular, random sequences with the uniform distribution are essentially incom-
pressibile.

Theorem 3 (Incompressibility of uniformly random sequences) Let V be a
finite alphabet containing 2k elements for some positive integer k. Let Enc be an
arbitrary compression algorithm mapping sequences of elements of V to bit strings.
Let n be any positive integer. Consider the uniform distribution of random sequences
x ∈ V n, that is, the distribution in which all sequences have the same probability
1/|V n|. Then

P[ length of Enc(x) ≥ kn− 10] ≥ 0.999

Proof: The number of sequences that can be encoded to binary strings of length
< kn − 10 (that is, of length ≤ kn − 11) is at most the number of distinct binary
strings of length ≤ kn − 11, which is equal to 2(n−11)+1 − 2 < 2n−10. Each of those
sequence has probability 1/|V k| = 1/2kn of being generated, so the probability of
generating such a string is at most

2kn−10

2kn
=

1

210
< 0.001

�

In general, the probability that a random sequence is encoded to a length ≥ kn − t
is at least 1− 2−t.

In most interesting cases, however, we are dealing with data that is not uniformly
distributed. Letters in languages, for example, occur with different frequencies, and
pairs and triples of letters have even more non-uniform distributions. In such cases,
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algorithms like Huffman’s algorithm are able to substantially compress the data, and
we will now provide some rigorous results bounding how significant this compression
can be.

Suppose that we run Huffman’s algorithm on a sequence s of n elements from an
alphabet V . Call K the number of elements of V , which we do not assume any more
to be a power of 2, and call them v1, . . . , vK . Let us call pin the frequency of the letter
vi in the sequence s. If Huffman’s algorithm assigns, in a prefix-free way, a bit-string
encoding of length `i to each letter vi, then s is encoded to a bit string of length

L =
K∑
i=1

`ipin

We now make an important observation: if we use the same Huffman code, all other
sequences with p1n occurrences of v1, p2n occurrences of v2, etc., are also going to
have an encoding of length L.

At this point we can ask: how many sequences of n elements of V are there such
that, for i = 1, . . . , K, the letter vi appears pin times? It can be proved that such a
number is expressed by the multinomial coefficient

n!

(p1n)!(p2n)! · · · (pKn)!

This means that the above number must be ≤ 2L, since all such sequences are being
injectively mapped to bit-strings of length L by the Huffman code, so we have

L ≥ log2 n!−
K∑
i=1

log2(pin)!

When we talked about the complexity of sorting, we already encountered the approx-
imation

log2 n! = n log2 n− n log2 e + Θ(log n)
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If we combine the above two expressions, we have

L ≥ n log2 n− n log2 e−

(
K∑
i=1

pin log2 pin

)
+

K∑
i=1

pin log2 e + Θ(K log n)

= n log2 n−

(
K∑
i=1

pin log2 pin

)
+ Θ(K log n)

= n log2 n−

(
K∑
i=1

pin log2 pi

)
−

(
K∑
i=1

pin log2 n

)
+ Θ(K log n)

= −
K∑
i=1

pin log2 pi + Θ(K log n)

= n ·

(
K∑
i=1

pi log2

1

pi

)
+ Θ(K log n)

We went from the first to the second line by canceling out−n log2 n with
∑

i pin log2 n,
due to the fact that

∑
i pin = n. We went from the second to the third line by writing

out log2 pin as log2 pi + log2 n. We went from the third to the fourth line by canceling
out −n log2 n with

∑
i pin log2 n. The last line is just a re-arrangement of terms.

The quantity
∑

i pi log2
1
pi

is called the entropy of (p1, . . . , pK), and it is a fundamental
quantity in data compression and in information theory in general.

Notice that in this section we have proved the following result.

Theorem 4 (Lower bound to Huffman encoding length) Let V = {v1, . . . , vK}
be any finite alphabet, let s ∈ V n be any sequence of n elements of V , let pi be the
fraction of times that letter vi appear in the sequence s, and let L be the length of a
Huffman encoding of s. Then

L ≥ n ·

(
K∑
i=1

pi log2

1

pi

)
+ Θ(K log n)

3 Arithmetic coding

In this section we show that, up to some additive error, the length of the encoding
found by Huffman algorithm matches the lower bound proved in the previous section.

Theorem 5 (Upper bound to Huffman encoding length) Let V = {v1, . . . , vK}
be any finite alphabet, let s ∈ V n be any sequence of n elements of V , let pi be the
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fraction of times that letter vi appear in the sequence s, and let L be the length of a
Huffman encoding of s. Then

L ≤ n ·

(
K∑
i=1

pi log2

1

pi

)
+ 2n

We will prove the above result by describing a prefix-free encoding of the letters of V
that achieves the above bound. Since Huffman’s algorithm is optimal among prefix-
free encodings of letters of V , the above bound will apply to the output of Huffman’s
algorithm as well.

The encoding that we discuss is called arithmetic coding. To apply this method, we
fix some arbitrary order v1, . . . , vK of the letters of V , and we consider, for every
letter vi, the interval of values between

p1 + · · ·+ pi−1

and
p1 + · · ·+ pi−1 + pi

For example, if we have three letters {a, b, c}, and we have pa = .2, pb = .5 and
pc = .3, then we associate to a the interval [0, 0.2), to b the interval [0.2, 0.7) and to
c the interval [0.7, 1).

The first step of the encoding is to choose, in each interval, a binary number that
is contained in the interval and such that appending any additional binary digits
to the number defines another number still in the interval. For example, the first
interval, written in binary, is between 0 and 0.00110 · · · . The number 0.000 has the
desired property, because 0.000 is in the interval, and any number obtained by adding
additional digits, for example 0.0001101 is also in the interval. The interval [0.2, 0.7)
is

[0.00110 · · · , 0.10110011 · · · )

in binary, and the number 0.01 has the required properties. The third interval [0.7, 1)
is

[0.10110011 · · · , 0.111111 · · · )

in binary, and the number 0.11 has the required properties.

After we find a number with the required properties in each interval, remove the
“0.” initial part of the binary representation from each of these numbers, and the
remaining bit string will be the binary encoding of the respective element of V .

In the above example, we would have 000 as an encoding of a, 01 as an encoding of
b, and 11 as an encoding of c.
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Note that the properties enforce that each element of V is mapped to a different bit
string, and that the encoding is prefix-free.

How do we find such numbers in practice?

The idea is to use the following fact: if r is a real number between 0 and 1, and we
write the binary expansion of r and take only ` digits of precision, then we obtain a
number r̂ that is at most r and at least r − 2−`. (Think about the analogous fact in
base 10.) Furthermore, if we attach any additional digits at the end of r̂, we obtain
a number that is at most r̂ + 2−`.

For example, 1/3 in binary is 0.010101 · · · . If we take 4 digits of precision, we have
the approximation 0.01012 = 0.31510, and the error is 0.018333 · · ·10 which is less
than 2−4 = 0.062510. Furthermore, any number that we can obtain by appending
digits at the end of 0.01012 is at most 0.0101111 · · ·2 = 0.01012 + 0.00001111 · · ·2 =
0.01012 + 2−4.

The trick is to write the midpoint of the interval, that is p1 + · · · + pi−1 + 1
2
pi, in

binary and to truncate the binary representation to have enough precision that the
truncated binary number is still > p1 + · · · + pi−1, and such that if we append any
additional digits we are still below p1 + · · · + pi−1 + pi. This is doable with `i digits
of precision, provided that 2−`i < pi

2
, that is, provided that

`i > log2

1

p1
+ 1

In particular, it is possible to encode each letter vi using dlog2
1
pi
e + 1 ≤ log2

1
pi

+ 2
bits, and the total length of the encoding is at most

∑
i

pin ·
(⌈

log2

1

pi

⌉
+ 1

)
≤ n ·

(∑
i

pi log2

1

pi

)
+ 2n

To see how this works in the above example, the interval [0, 0.2) has midpoint 1/10,
whose binary representation is 0.0001100110011 · · · and we use the approximation
0.000 (the theory gives us that four digits after the dot suffice, but in this case
even three are enough). The midpoint of the interval [0.2, 0.7) is 0.45, whose binary
representation is 0.011100110011 · · · . In this case we take two digits of precision, as
guaranteed by the theory. The midpoint of [0.7, 1) is 0.85, whose binary representation
is 0.11011001100110011 · · · , and again two digits after the dot suffice.

9


	Huffman's algorithm's optimality
	Lower Bounds
	Arithmetic coding

