
Bocconi University— 30540: Computer Science II Handout NP2
Fabrizio Iozzi and Luca Trevisan April 20, 2021

In this lecture we prove our fist NP-completeness result, and we show that the Circuit-
SAT problem is NP-complete. Once we have one NP-complete problem, each subse-
quent NP-completeness result requires only one reduction. We will show a reduction
from Circuit-SAT to 3SAT, which will give us our second NP-complete problem.

1 NP-completeness of Circuit SAT

A Boolean circuit is an abstract device that computes Boolean functions of Boolean
inputs. The device is made of Boolean gates connected by wires. We can model a
circuit as a directed acyclic graph whose nodes are gates and whose edges are wires
connecting gates. The inputs of the circuit are modelled as the sources (nodes of
indegree 0) of the graph and the outputs are modelled as the sinks of the graph
(nodes of outdegree 0).

The size of a circuit is the number of gates.

One obtains different kinds of circuit depending on the kind of Boolean gates that
one allows. For our purposes, we will allow AND gates, OR gates and NOT gates. A
NOT gate has indegree 1, and the output is the negation of the input, that is, if the
input is 0 the output is 1 and vice versa. An AND gate has indegree 2 and computes
the product of the inputs, so if both inputs are 1 then the output 1, otherwise the
output is 0. An OR gate has indegree 2 and the output is 1 if at least one input is 1,
and the output is 0 if both inputs are 0. To describe the computation of a circuit on
a given input, label the nodes corresponding to the inputs by the bits of the input,
then proceed in topological order to evaluate each gate given the label of the input
nodes/gates. The label of the output nodes is the output of the circuit.

The main result that we will use (without proof) is as follows.

Theorem 1 (Circuits can Simulate Algorithms) labelth:circuitsim If Alg is an
algorithm that takes worst-case time t(n) on inputs of length n, then for every n
there is a boolean circuit of size O(t2(n)) such that, for every input x of length n,
the output of the circuit on input x is the same as the output of Alg on input x.
Furthermore, given the code of Alg and the parameter n, such a circuit is computable
in time polynomial in t(n).

We have not built enough techniques to prove the above theorem: in particular, we
have not provided a sufficiently formal definition of what is an algorithm and what is

1



the running time of an algorithm on a particular input. The general idea is that if an
algorithm uses at most s(n) bits of memory and runs for at most t(n) steps on inputs
of length n, then the execution of one step of the algorithm can be simulated by a
circuit of size O(s(n)), and the execution of the entire algorithm can be simulated
by combining t(n) such circuits, one per computational step, yielding a simulating
circuit of size O(t(n) · s(n)). Finally, one uses the fact that s(n) ≤ O(t(n)) because
each step of the algorithm affects at most O(1) memory locations (such a statement
will depend on the precise way in which we define “algorithm” and “time step”).

Definition 2 (Circuit SAT) The Circuit-SAT problem is defined as follows: given
a boolean circuit C with a one-bit output, find an input x such that C(x) = 1, if such
an input exists.

Theorem 3 Circuit-SAT is NP-complete.

Proof: It follows from the definition that Circuit-SAT is an NP search problem:
the definition of the value of C(x) for a given circuit C and input x is an algorithm
definition that can be implemented in linear time.

We prove that circuit-SAT is NP-hard as follows. Let X be an NP search problem,
and VX be the polynomial time computable property that defines the NP search
problem X.

Given an input x for X of length n, the function f of the reduction constructs a
circuit Cx such that, for every possible solution S for x, we have Cx(S) = VX(S).
The function g(x, S) just outputs S. If the function f behaves as prescribed, and
if it is computable in time polynomial in len(x), then it is clear that what we have
described is a reduction.

The polynomial time computation of f proceeds as follows. Given x, we compute
n = len(x), and we use the “furthermore” part of Theorem ?? to construct a circuit
Cn such that for every x and every S we have Cn(x, S) = VX(x, S). Since VX runs
in time polynomial in len(x), the circuit Cn can be constructed in time polynomial
in n. Finally, we let Cx be the circuit Cn modified so that the first n inputs are
“hard-wired” to be x. �

2 NP-completeness of 3SAT

An input of 3SAT problem is a Boolean formula over Boolean variables x1, . . . , xn

in 3-Conjunctive Normal Form (3CNF). Conjunctive normal form means that the
formula is a AND-of-OR, and the number 3 stands for the fact that each OR is over

2



three variables or negated variables. For example the following is a 3CNF Boolean
formula over Boolean variables x1, x2, x3, x4, x5:

(x1 ∨ x2 ∨ x5) ∧ (x2 ∨ x̄4 ∨ x5) ∧ (x1 ∨ x̄3 ∨ x̄4) ∧ (x̄2 ∨ x3 ∨ x5) (1)

The symbol ∧ stands for AND (looks a bit like an “A” as in “And”) and the symbol
∨ stands for OR (looks like a “v”, as in “vel” which is Latin for “or” – don’t look
for logic in the way logicians define notation). The bar over a variable stands for
negation, so x̄2 should be read as NOT x2.

Given a 3CNF Boolean formula, the goal of the 3SAT problem is to find an assignment
of Boolean values to the Boolean variables that makes the formula evaluate to True,
if such an assignment exists (if this happens we say that the assignment satisfies the
clause). For example, assigning every variable to True satisfies the formula in (1). A
couple more useful pieces of terminology: the OR subformulas in a 3CNF formula
(like x2∨x̄4∨x5) are called the clauses of the formula. A variable like x2 and a negated
variable like x̄4 are called literals. Thus a 3CNF formula is an AND of clauses, each
clause is an OR of three literals, and each literal is either a variable or the negation
of a variable.

We call at−most− 3SAT the variant of 3SAT in which each clause contains at most
3 literals rather than exactly 3.

Theorem 4 at-most-3SAT is NP-complete.

Proof: It is clear that, given a Boolean formula and an assignment to the variables,
we can verify in linear time if the assignment satisfies the formula, so 3SAT is an
NP-search problem.

To complete the proof we want to show that Circuit-SAT ≤ 3SAT. Given a circuit
C that has n inputs and m gates, we define a Boolean formula with n + m variables
g1, . . . , gn+m as follows. Let us think of the DAG with n+m vertices that is associated
to the circuit C: it has vertices v1, . . . , vn associated with the n inputs, and then
m vertices vn+1, . . . , vn+m associated with the m gates. Assume that we numbered
vertices consistently with a topological order, so that vn+m corresponds to the output
gate. We construct the formula F by associating a small formula to each gate and
taking the AND of all the small formulas associated to the gates, and the AND of
the above with gn+m.

For each i = 1, . . . ,m, the small formula associated to the vertex vn+i, that is, to the
i-th gate is:

• If vn+i corresponds to a NOT gate and the incoming edge comes from vj, then
the formula is

(gn+i ∨ ḡj) ∧ (ḡn+i ∨ gj)

3



which is equivalent to the equation gn+i = ḡj.

• if vn+i corresponds to an AND gate, and the incoming edges come from vj and
vh, then the formula is

(gn+i ∨ ḡj ∨ ḡh) ∧ (ḡn+i ∨ gj ∨ gh) ∧ (ḡn+i ∨ ḡj ∨ gh) ∧ (ḡn+i ∨ gj ∨ ḡh)

which is equivalent to the equation gn+i = gj ∧ gh.

• if vn+i corresponds to an OR gate, and the incoming edges come from vj and
vh, then the formula is

(gn+i ∨ ḡj ∨ ḡh) ∧ (ḡn+i ∨ gj ∨ gh) ∧ (gn+i ∨ ḡj ∨ gh) ∧ (gn+i ∨ gj ∨ ḡh)

which is equivalent to the equation gn+i = gj ∨ gh.

Now we have the following claims.

1. If (g1, . . . , gn+m) = (b1, . . . , bn+m) is an assignment that satisfies the formula F
defined above, then, on input (b1, . . . , bn), the i-th gate of circuit C evaluates to
bn+i, as can be verified by induction on i. Furthermore, bn+m = 1, and so the
circuit outputs 1.

2. If x1, . . . , xn is an input such that C(x1, . . . , xn) = 1, and if yi is the value of gate
i of circuit C on input x1, . . . , xn, then (g1, . . . , gn+m) = (x1, . . . , xn, y1, . . . , ym)
satisfies the formula F .

We claim that if we define f(C) to be the formula F described above, and

g(C, b1, . . . , bn+m) = b1, . . . , bn

then we have a reduction from Circuit-SAT to at-most-3SAT.

The point is that the first claim above shows that if b1, . . . , bn+m is a valid solution
for F , then b1, . . . , bn is a valid solution for C. The second claim above shows that if
there is a solution for C then there is a solution for F , and so if there is no solution
for F then there is no solution for C either. �

Theorem 5 3SAT is NP-complete

Proof: We show that at-most-3SAT ≤ 3SAT.

Given a CNF formula F in which every clause has at most three literals, we construct
a formula F ′ in which every clause has exactly three literals, and such that F is, in
an appropriate sense, equivalent to F ′.

We repeatedly apply the following procedure until all clauses have exactly three lit-
erals:

4



• If there is a clause (xi ∧ xj) with two literals, remove it, and replace it with the
two clauses

(xi ∨ xj ∨ y) ∧ (xi ∨ xj ∨ ȳ)

where y is a new variable that does not appear anywhere else in the formula
(similarly if xi and/or xj are complemented in the clause);

• If there is a clause (xi) with a single literal, remove it, and replace it with the
four clauses

(xi ∨ y ∨ y′) ∧ (xi ∨ ȳ ∨ y′) ∧ (xi ∨ y ∨ ȳ′) ∧ (xi ∨ ȳ ∨ ȳ′)

where y and y′ are new variables that appear nowhere else in the formula (sim-
ilarly if the clause is x̄i).

At each step of this transformation, we maintain the invariant that if there is an
assignment to the x variables that satisfies F , then it can be extended with an ap-
propriate assignment to the y variables to create an assignment that satisfies the new
formula, and if there is an assignment to the x variables and the y variables that
satisfies the new formula, then restricting this assignment to the x variables satisfies
F .

The reduction maps F to F ′ and an assignment to the x and y variables that satisfies
F ′ to the restriction of the assignment to only the x variables. �

5


	NP-completeness of Circuit SAT
	NP-completeness of 3SAT

