
Prove the Max Flow Min cut Thin

proof of correctness of Ford Fulkerson

regardless of how we choose path in

each iteration

Running Time Analysis of

Edmonds- Karp

Ford - Fulkerson alg with BFS

Applications of Max Flow



Theorem

Max Flow Mincut Theorem
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Then capes ) -- Val Cf )
-

for any other flow f
'

val Cf
' II capes) = val Cf)

and so f is optimal
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distances from s in residual network
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In general
f- output of algorithm

S = Lr : v
reachable from s in

residual network
with respect toff

SES t # S

S is a
cut

consider any
Cais ) at S b # s

claim : fails = Carb

proof : if fa.se ca, s then carb ) belongs

to residual network

a path s->a exists in residual network

because AES

but then s→a→b is a path from

s to b in residual network

but bets so such a path
cannot exist

val (f) = Ig Ffs fab = Ies sca 's

= capes)
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Edmonds- Karp algorithm
Ford - Fulkerson ,

with BFS used to

find path in residual network

Each iteration

OCIEI ) to find path

OCIVI ) to update flow
update residual network

How many
iterations ?



Main Thin of Edmonds - Karp

There can be at most IN .IE/ iterations

structure of proof
② Distance of nodes from s in

residual network can only increase

and can be at most IVI - I

② If an edge luv ) is bottleneck

of augmenting path at some

iteration
, and distance of u from S

is l at that iteration , then

next time luv ) is bottleneck

of augmenting path we have

that distance from s to u

is Seltz

(UN can be bottleneck edge E NII times

③ There are ⇐ ZIEL pairs luv)

that can be a bottleneck edge
# iterations E 2- LEI - ( IVI - 2) 12 E LEI - IH



distances from s in residual network

after k iterations

nodes at distance
O L
- 3 i

177 S yo
. o

path p

residual network after kt2 iterations

same as residual network at time k except

- some edges curl of p might have

disappeared
- some edges (Wiz ) such

that cziw ) in p might be added

consider a vertex v at distance i

from s at iteration K

what about paths from s to u

after iteration Kt I

call dr
.
Is

,
a) distance from s to a

after a iteration

if an edge ( un ) exists in residual

network after kti iterations drys ,v)
E- Itdkcs ,u)
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For every edge carb ) in network

at iteration K

dk Cs , b) E I talk Cs .
a)

elk ( s, v ) = i
-

network at iteration ret z

every
edge carb) is either an edge

that was in network at step k

or an edge dials , b) = dkcs , a )
- L

either way

dials , b) E L tdk ( s , a)

take any path from s to v

in network of iteration Kt L

s → Vs → Vz → - .
-

⇒ Ve- y→ V

S
, V2

ductus) E Lt dk Csis ) =L

dr
.
( KEE E Lt ducks.us) EE

n

,

i

,

i = duels , v) E E

number of steps to go from s too

after iteration vets > number of steps after it . K



② Suppose C v.v ) is a bottleneck

at iteration K
,

and ,
in
that iteration

dials
,
u ) = l

suppose ( un ) is again a
bottleneck

at a later iteration K
'
> k

Then drei ( s, u) > lt2

Proof

-
at iteration k da Cs

,
v ) = Ets

-

after iteration K
,

Cun ) disappears from
residual network

- at some iteration K
'

, luv ) reappear in

residual network
.

→ iv. u ) was in the shortest path
from s to t in iteration kn

dats ,u) > drills , u ) = It dkncs , v)

> It Ets

= Etz

time k se-o%v→ot
time ktl there is no edge l Etz

(un) in residual network

time K " s
._e¥&'t

time K
'

s-30¥>q→ot
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Each pair
Curr) can be a bottleneck

± IVI times
2

because distance of u from S

is > o
at beginning

⇐ IVI - L
at the end

-

Number of pairs cowl that can be

a bottleneck is e z.IE/

-

Every iteration uses at least

one Cu , v1 as a bottleneck

-

Number of iterations I ZIEL.cl#t-IEI-l4


