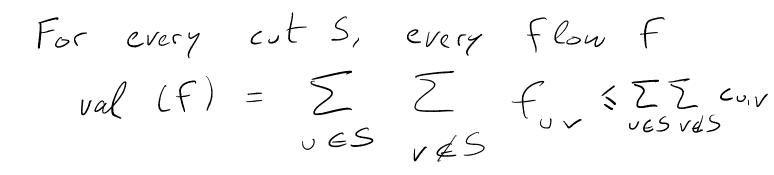
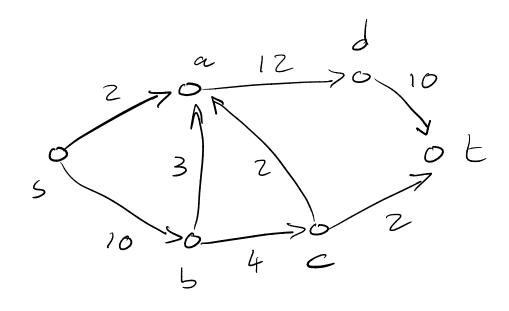
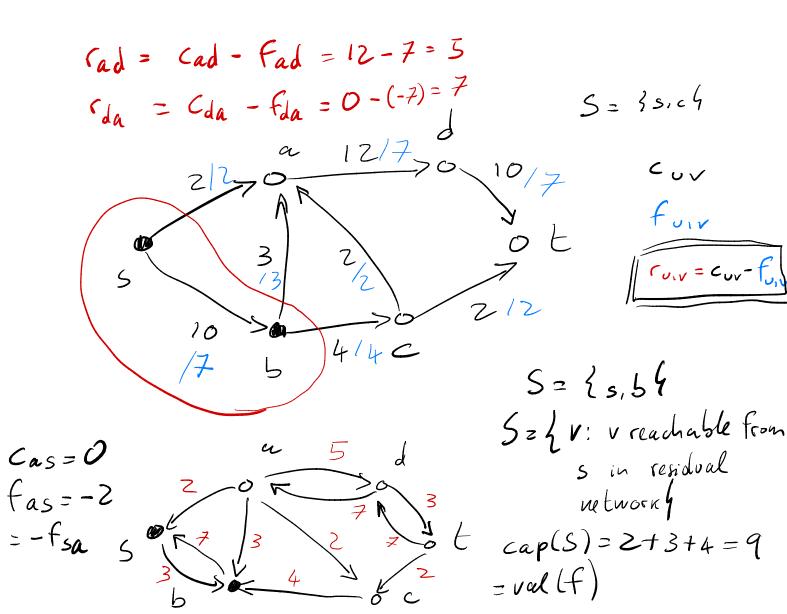
Prove the Max Flow Min Cut Thm proof of correctness of Ford Fulkerson regardless of how we choose path in each iteration Running Time Analysis of Edmonds- Korp Ford-Fulkerson ale with BFS Applications of Max Flow

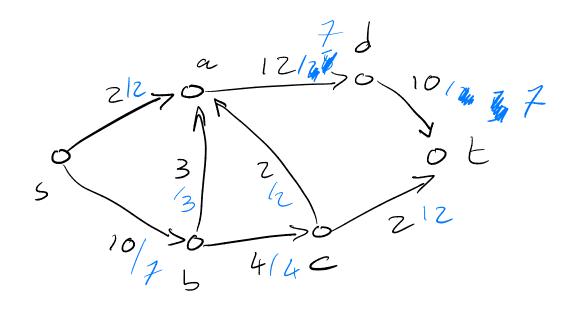
Treorem Max Flow Mincut Theorem Let N be a network f be the output of Ford-Fulkerson Let Let 5 be the set of vertices reachable from s in the residual network of N with respect to flow f cap(S) = val(F) Then For any other flow t' val (F') < cap(S) = val (F)

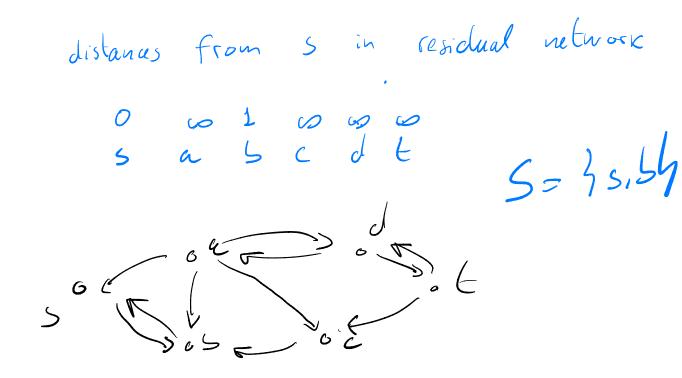
and so f is optimal



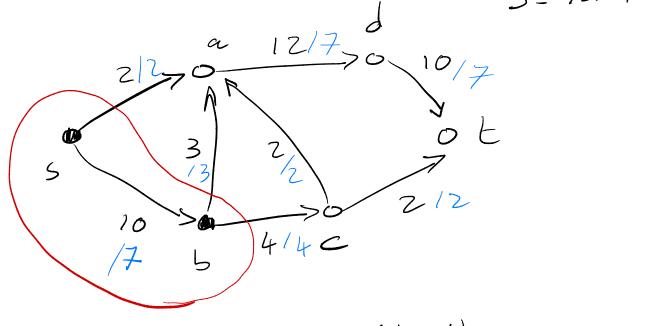








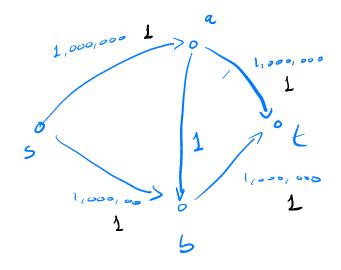
5 = 35,04

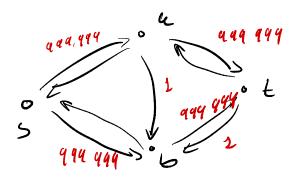


cap(3s,ch) = 2 + 10 + 2 + 2= 16 $S=3s,ch \qquad \sum_{v \in S} \sum_{v \in S} f_{v,v} = 9$

In general

$$f$$
 output of algorithm
 $S = 2r$: r reachable from s in
restidual network with respect to fg
 $seS E \# S$
 S is a cut
consider any (a.S) $a \in S$ $b \notin S$
claim: $fa_{15} = Ca_{15}$
proof: if $fa_{15} \leq Ca_{15}$ Elan (a.b) belongs
to residual network
 a path $S \rightarrow a$ exists in residual network
lecanse $a \in S$
 Sut than $S \rightarrow a \rightarrow S$ is a path from
 s to b in residual network
 $but 5 \notin S$ so such a path
cannot exist
 $val(f) = \sum_{a \in S} \sum_{b \notin S} fa_{15} = \sum_{a \in S} \sum_{b \notin S} c_{a,S}$
 $= cap(S)$





Edmonds-Karp algorithm Ford-Fulkerson, with BFS used to find path in residual network

Each iteration O(IEI) to find path O(IVI) to update flow update residual network

many iterations? Hon

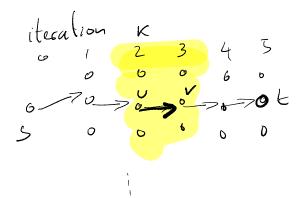
Main Thm of Edmonds-Karp There can be at most IVI. El iterations

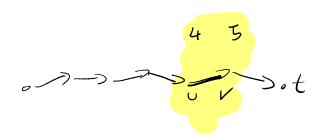
Distance of proof Distance of nodes from s in residual network can only increase and can be at most IVI-1

2) If an edge (U.V) is bottleneck of augmenting path at some iteration, and distance of u from s is lat that iteration, then next time (U,r) is bottleneck of augmenting path we have that distance from s to u is 3l+2 (v,v) can be bottleneck edge $\leq \frac{|V|-1}{2}$ times 3) There are $\leq 2l \in l$ pairs (v,v)that can be a bottleneck edge # iterations & Z.IEI.(IVI-1)/2 < IEI.IVI

2 ->06 5 For every edge (a,5) in network at iteration K $d\kappa(s,b) \leq 1 + d\kappa(s,a)$ $d\kappa(s,v) = i$ network at iteration K+1 every edge (a,5) is either an edge that was in network at step k or an edge $d_{\kappa}(s, b) = d_{\kappa}(s, a) - 1$ either way $d_{\kappa}(s, b) \leq 1 + d_{\kappa}(s, a)$ take any path from s to v in network of iteration K+1 5->V1->V2->Ve-1->V $d_{\kappa}(\frac{S, v_{2}}{\sqrt{5}}) \leq 2 + d_{\kappa}(S, S) = 2$ dr (12) 5 1 + Jr (45, 12) 52 $i = d\kappa(S, v) \leq \ell$ after iteration K+2 > number of steps after it. K

Proof
- at iteration
$$\kappa$$
 $d\kappa(S, V) = C+1$
- after iteration K , (U,V) disappears from
residual network
- at some iteration $\kappa''(K')$ (U,V) reappear in
residual network.
-> (V, U) was in the shortest path
from s to t in iteration κ''
 $d_{\kappa'}(S,U) \ge d_{\kappa''}(S,U) = 1 + d_{\kappa''}(S,V)$
 $\ge 1 + C + 1$
 $= C + 2$





Each pair
$$(u,v)$$
 can be a bottleweck
 $\leq |V|-1$ times
because distance of u from s
is 70 at beginning
 $\leq |V|-1$ at the end
Number of pairs (u,v) that can be
a bottleweck is $\leq 2.|E|$
 $E viry$ iteration uses at least
one (u,v) as a bottleweck
Number of iterations $\leq 2|E| \cdot (|V|-1) < |E| \cdot |V|$