Flow In Networks

Peer-to-peer Lending

Trust in ΚE

Throughput in Network

Max Flow Problem DeF.

Given: directed graph G=LVIE) · capacity Currofor every edge LUIDGE network (- a sender SEV and a receiver tEV Want to compute <u>Flow</u> of maximum value

A <u>Flow</u> in a network is an assignment of a value $F_{u,v}$ to each edge (u,v)• $0 \le F_{u,v} \le C_{u,v}$ capacity • $V \le V \ v \ne s, v \ne t$ conservation $\sum_{u: (u,v) \le E} F_{u,v} = \sum_{w: (v,w) \le E} V, w$

Path

Def: flow is an assignment
$$F_{0,V}$$
 to
every us such that $(u_{1V}) \circ r(v_{1}u)$ is in E
• $F_{0,V} = -F_{V,U}$
Capacity • $F_{U,V} \leq C_{U,V}$ $(C_{0,V} = 0 \text{ if}_{(U_{1V}) \notin E)}$
conservation • $\frac{V V V \neq s_{1} V \neq t}{\sum w_{eV} f_{VW} = 0}$

Residual Network

Def.

U 1 2 Flow a network N and a Given Residual network is network with with edges vectices of N and Same Cov > For, labeled which For Cov-fur 54 V G 2 2

Example

S=2s,ah cap(S)=3+4=7

$$cap(S) = \sum_{a \in S} \sum_{b \notin S} C_{a,b}$$

Lemma Given a network N; For every flow F and every cits val (F) ≤ cap(S)

Lemma Given a network N;
For every flow
$$F$$
 and every cut S
val $(F) \leq cap(S)$

Proof $Val(F) = \sum_{v \in V} F_{s,v} \subset o^{lef} o^{f} value of a flow$ $<math>cap(S) = \sum_{a \in S} \sum_{s \notin S} F_{a,s}$

for every
$$V \neq S$$
, $V \neq C$
 $w \in V$ from = 0 conservation
 $w \in V$ from = 0 conservation
 $w \in V$ from = 0 lf of value
of flow
 $V \in S$ we V from
 $v \in S$ we V from
 $v \in S$ from = $Val(f)$
 $w \in V$ from
 $v \in S$
 $v \neq S$ $(= 0)$

$$val(f) = \sum_{v \in S} \sum_{w \in V} F_{vw}$$
$$= \sum_{v \in S} \sum_{w \in S} vw + \sum_{v \in S} \sum_{w \notin S} f_{vw}$$
$$= \sum_{v \in S} \sum_{w \notin S} F_{vw} \leq \sum_{v \in S} \sum_{w \notin S} c_{vw}$$
$$= cap(S)$$

Treorem Max Flow Mincut Theorem Let N be a network f be the output of Ford-Fulkerson Let Let 5 be the set of vertices reachable from s in the residual network of N with respect to flow f cap(S) = val(F) Then For any other flow t' val (F') < cap(S) = val (F)

and so f is optimal