
Bocconi University— 30516: Theoretical Computer Science Solutions to Problem Set 1
Professor Luca Trevisan October 1, 2019

Solutions to Problem Set 1

1. O(·) Notation

(a) Give the best (slowest growing) big-Oh bound for f(n) =
∑n

k=1 k
r, where r > 0

is a fixed constant.

Solution: O(nr+1). Since each term in the sum is at most nr, we have f(n) ≤
nr+1. This is the best possible bound, because the last n/2 terms of the sum are
each at least nr/2r, so we have f(n) ≥ nr+1/2r+1.

(b) Which of the following statements is true or false?

n2 + 4n log n = O(n2) (1)

2n = O(n2) (2)

log n = O(n) (3)

n3 + 3n2 = O(n2) (4)

Solution:

n2 + 4n log n = O(n2) True

2n = O(n2) False

log n = O(n) True

n3 + 3n2 = O(n2) False

2. Recurrence relations

Solve the following recurrence relations (c is a constant).

(a) T (n) = 5 · T (n4) + cn2

(b) T (n) = 3 · T (n2) + cn

(c) T (n) = 27 · T (n3) + cn3

(d) T (n) = 2 · T (n2) +
√
n

(e) T (n) = 3 · T (n3) + cn2

Solutions to Problem Set 1 — October 1, 2019 2

Solution:

(a) T (n) = 5 · T (n4) + cn2: T (n) = O(n2)

(b) T (n) = 3 · T (n2) + cn: T (n) = O(nlog2 3)

(c) T (n) = 27 · T (n3) + cn3: T (n) = O(n3 log n)

(d) T (n) = 2 · T (n2) +
√
n: T (n) = O(n)

(e) T (n) = 3 · T (n3) + cn2: T (n) = O(n2)

3. Divide and Conquer Given a sorted array A[1], . . . , A[n] containing distinct integer
values, design and analyse an O(log n) time algorithm that finds an index i such that
A[i] = i, if such an index i exists.

Solution: The main idea is that, since the array contains distinct integers, we always
have A[i + 1] ≥ A[i] + 1. This means that if A[i] > i, then A[i + 1] > i + 1, and so
it is not possible to have A[j] = j for any j ≥ i. Similarly, if A[i] < i, then we must
have A[j] < j for every j ≤ i. This leads to the following algorithm

def fixed-point(A,n):
first=1
last=n
while first ≤ last:

middle =
⌈
first+last

2

⌉
if A[middle] = middle]: return middle
else if A[middle] > middle: last= middle− 1
else first=middle + 1

return ⊥

The algorithm maintains the invariant that an index i such that A[i] = i, if it exists,
satisfies first ≤ i ≤ last. When we have first > last we correctly conclude that
such an index does not exist, and we return the error symbol ⊥. If we find an index
middle such that A[middle] = middle we correctly return it. The algorithm converges
because the range of indices from first to last decreases at each iteration. The
algorithm performs O(1) work in each iteration of the while loop. In each iteration,
the range A[first], . . . , A[last] being explored decreases by a factor of 2, so the number
of iterations is O(log n) and the total time is O(log n).

4. Strongly Connected Components

One of the following statements is true. Say which one and prove it.

(a) If a directed graph G has k strongly connected components, by adding one more
edge to G the number of strongly connected components can drop at most by
1 (i.e. the new graph obtained from G by adding one edge has at least k − 1
strongly connected components).

Solutions to Problem Set 1 — October 1, 2019 3

(b) For every k, there exists a graph G that has k strongly connected components
and such that if we add one particular edge to G, we can make it be strongly
connected (i.e. the new graph has only 1 strongly connected component).

Solution: The second statement is correct. An example is a path with k vertices
v1, . . . , vk and edges (vi, vi+1 for i = 1, . . . , k− 1). Such a graph is acyclic and so each
of the k vertices is a strongly connected component. Adding the edge (vk, v1) turns
the graph into a cycle, which is strongly connected.

5. Minimum Spanning Tree

Prove that the following algorithm for the minimum spanning tree problem is correct,
or show an example of a graph where the algorithm fails. In either case, discuss how to
efficiently implement the algorithm, and what is the resulting running time. Assume
the graph is represented with adjacency lists.

Algorithm A(G=(V,E): graph, w: weights)
sort the edges of G into non-increasing order of weight
T = E
for all e ∈ E in non-increasing order of weight do

if T − {e} is connected then T = T − {e}
return T

Solution: There are a few possible approaches to prove correctness.
We can prove by induction on k that, after the algorithm has deleted k edges, there is

an optimal solution which is a subset of the residual edges.
This is true when 0 edges are removed. If this is true when k edges are removed, call

Gk the graph at that point, and call T an optimal solution which is a subset of the edges
of Gk.

Let (u, v) be the (k + 1)-th edge to be removed and call Gk+1 the graph obtained from
Gk by deleting (u, v). We need to prove that there is an optimal solution T ′ that uses a
subset of the edges of Gk+1. If T does not use (u, v) then we are done. If T uses (u, v), then
remove (u, v) from T . This splits the vertices into two connected components, call them A
and B.

We claim that, of the edges considered after the k-th removed one and before (u, v),
none of them go between A and B. Indeed, if there was an edge (a, b) in Gk such that
a ∈ A, b ∈ B and such that (a, b) comes before (u, v) in the ordering, then removing (a, b)
from Gk would not disconnect Gk, because the edges of T (which is a subset of Gk) suffice
to connect the vertices within A and the vertices within B, and (u, v) goes between A and
B. Thus, (a, b) would have been the (k + 1)-st edge to be removed instead of (u, v) and we
have a contradiction.

Furthermore, Gk must contain an edge (a, b) such that a ∈ A and b ∈ B, otherwise the
removal of (u, v) would disconnect Gk, and we would not have removed (u, v) from Gk.

In conclusion, there is an edge (a, b) in Gk such that the cost of (a, b) is ≤ than the cost
of (u, v) and such that a ∈ A and b ∈ B. Add (a, b) to T to reconnect it, and obtain a new

Solutions to Problem Set 1 — October 1, 2019 4

tree T ′. The new tree is a subset of Gk+1, it is at least as good as T , and hence optimal,
and we have proved the inductive step.

Edges can be sorted in O(|E| log |E|) time, and each of the |E| steps can be performed
in O(|V |+ |E|) time, leading to a running time of O(|E|2).

