
Bocconi University — 30516: Theoretical Computer Science Handout LN19
Professor Luca Trevisan November 28, 2019

Notes for Lecture 19

1 NP-completeness of Circuit-SAT

We will prove that the circuit satisfiability problem CSAT described in the notes of Lecturr
16 is NP-complete.

Proving that it is in NP is easy enough: The algorithm V () takes in input the descrip-
tion of a circuit C and a sequence of n Boolean values x1, . . . xn, and V (C, x1, . . . , xn) =
C(x1, . . . , xn). I.e. V simulates or evaluates the circuit.

Now we have to prove that for every decision problem A in NP, we can find a reduction
from A to CSAT. This is a difficult result to prove, and it is impossible to prove it really
formally without introducing the Turing machine model of computation. We will prove the
result base e following fact, of which we only give an informal proof.

Theorem 1
Suppose A is a decision problem that is solvable in p(n) time by some program P, where n
is the length of the input. Also assume that the input is represented as a sequence of bits.

Then, for every fixed n, there is a circuit Cn of size about O((p(n)2) · (log p(n))O(1))
such that for every input x = (x1, . . . , xn) of length n, we have

A(x) = Cn(x1, . . . , xn)

That is, circuit Cn solves problem A on all the inputs of length n.
Furthermore, there exists an efficient algorithm (running in time polynomial in p(n))

that on input n and the description of P produces Cn.

The algorithm in the “furthermore” part of the theorem can be seen as the ultimate
CAD tool, that on input, say, a C++ program that computes a boolean function, returns the
description of a circuit that computes the same boolean function. Of course the generality
is paid in terms of inefficiency, and the resulting circuits are fairly big.
Proof: [Sketch] Without loss of generality, we can assume that the language in which P
is written is some very low-level machine language (as otherwise we can compile it).

Let us restrict ourselves to inputs of length n. Then P runs in at most p(n) steps. It
then accesses at most p(n) cells of memory.

At any step, the “global state” of the program is given by the content of such p(n) cells
plus O(1) registers such as program counter etc. No register/memory cell needs to contain
numbers bigger than log p(n) = O(log n). Let q(n) = (p(n) +O(1))O(log n) denote the size
of the whole global state.

We maintain a q(n)× p(n) “tableau” that describes the computation. The row i of the
tableau is the global state at time i. Each row of the tableau can be computed starting
from the previous one by means of a small circuit (of size about O(q(n))). In fact the
microprocessor that executes our machine language is such a circuit (this is not totally
accurate). 2



Notes for Lecture 19 2

Now we can argue about the NP-completeness of CSAT. Let us first think of how the
proof would go if, say, we want to reduce the Hamiltonian cycle problem to CSAT. Then,
given a graph G with n vertices and m edges we would construct a circuit that, given in
input a sequence of n vertices of G, outputs 1 if and only if the sequence of vertices is a
Hamiltonian cycle in G. How can we construct such a circuit? There is a computer program
that given G and the sequence checks if the sequence is a Hamiltonian cycle, so there is also
a circuit that given G and the sequence does the same check. Then we “hard-wire” G into
the circuit and we are done. Now it remains to observe that the circuit is a Yes-instance of
CSAT if and only if the graph is Hamiltonian.

The example should give an idea of how the general proof goes. Take an arbitrary
problem A in NP. We show how to reduce A to Circuit Satisfiability.

Since A is in NP, there is some polynomial-time computable algorithm VA and a
polynomial pA such that A(x) = YES if and only if there exists a y, with length(y) ≤
pA(length(x)), such that V (x, y) outputs YES.

Consider now the following reduction. On input x of length n, we construct a circuit C
that on input y of length p(n) decides whether V (x, y) outputs YES or NOT.

Since V runs in time polynomial in n+p(n), the construction can be done in polynomial
time. Now we have that the circuit is satisfiable if and only if x ∈ A.

2 NP-completeness of SAT

We defined the CNF Satisfiability Problem (abbreviated SAT) above. SAT is clearly in NP.
In fact it is a special case of Circuit Satisfiability. (Can you see why?) We want to prove
that SAT it is NP-hard, and we will do so by reducing from Circuit Satisfiability.

First of all, let us see how not to do the reduction. We might be tempted to use the
following approach: given a circuit, transform it into a Boolean CNF formula that computes
the same Boolean function. Unfortunately, this approach cannot lead to a polynomial time
reduction. Consider the Boolean function that is 1 iff an odd number of inputs is 1. There
is a circuit of size O(n) that computes this function for inputs of length n. But the smallest
CNF for this function has size more than 2n.

This means we cannot translate a circuit into a CNF formula of comparable size that
computes the same function, but we may still be able to transform a circuit into a CNF
formula such that the circuit is satisfiable iff the formula is satifiable (although the circuit
and the formula do compute somewhat different Boolean functions).

We now show how to implement the above idea. We will need to add new variables.
Suppose the circuit C has m gates, including input gates, then we introduce new variables
g1, . . . , gm, with the intended meaning that variable gj corresponds to the output of gate j.

We make a formula F which is the AND of m + 1 sub-expression. There is a sub-
expression for every gate j, saying that the value of the variable for that gate is set in
accordance to the value of the variables corresponding to inputs for gate j.

We also have a (m + 1)-th term that says that the output gate outputs 1. There is no
sub-expression for the input gates.

For a gate j, which is a NOT applied to the output of gate i, we have the sub-expression

(gi ∨ gj) ∧ (ḡi ∨ ḡj)



Notes for Lecture 19 3

For a gate j, which is a AND applied to the output of gates i and l, we have the
sub-expression

(ḡj ∨ gi) ∧ (ḡj ∨ gl) ∧ (gj ∨ ḡi ∨ ḡl)

Similarly for OR.
This completes the description of the reduction. We now have to show that it works.

Suppose C is satisfiable, then consider setting gj being equal to the output of the j-th gate
of C when a satisfying set of values is given in input. Such a setting for g1, . . . , gm satisfies
F .

Suppose F is satisfiable, and give in input to C the part of the assignment to F corre-
sponding to input gates of C. We can prove by induction that the output of gate j in C is
also equal to gj , and therefore the output gate of C outputs 1.

So C is satisfiable if and only if F is satisfiable.

3 NP-completeness of 3SAT

SAT is a much simpler problem than Circuit Satisfiability, if we want to use it as a start-
ing point of NP-completeness proofs. We can use an even simpler starting point: 3-CNF
Formula Satisfiability, abbreviated 3SAT. The 3SAT problem is the same as SAT, except
that each OR is on precisely 3 (possibly negates) variables. For example, the following is
an instance of 3SAT:

(x2 ∨ x̄4 ∨ x5) ∧ (x1 ∨ x̄3 ∨ x̄4) ∧ (x̄2 ∨ x3 ∨ x5) (1)

Certainly, 3SAT is in NP, just because it’s a special case of SAT.
In the following we will need some terminology. Each little OR in a SAT formula is

called a clause. Each occurrence of a variable, complemented or not, is called a literal.
We now prove that 3SAT is NP-complete, by reduction from SAT. Take a formula F of

SAT. We transform it into a formula F ′ of 3SAT such that F ′ is satisfiable if and only if F
is satisfiable.

Each clause of F is transformed into a sub-expression of F ′. Clauses of length 3 are left
unchanged.

A clause of length 1, such as (x) is changed as follows

(x ∨ y1 ∨ y2) ∧ (x ∨ y1 ∨ ȳ2)(x ∨ ȳ1 ∨ y2) ∧ (x ∨ ȳ1 ∨ ȳ2)

where y1 and y2 are two new variables added specifically for the transformation of that
clause.

A clause of length 2, such as x1 ∨ x2 is changed as follows

(x1 ∨ x2 ∨ y) ∧ (x1 ∨ x2 ∨ ȳ)

where y is a new variable added specifically for the transformation of that clause.
For a clause of length k ≥ 4, such as (x1 ∨ · · · ∨ xk), we change it as follows

(x1 ∨ x2 ∨ y1) ∧ (ȳ1 ∨ x3 ∨ y2) ∧ (ȳ2 ∨ x4 ∨ y4) ∧ · · · ∧ (ȳk−3 ∨ xk−1 ∨ xk)



Notes for Lecture 19 4

where y1, · · · , yk−3 are new variables added specifically for the transformation of that clause.
We now have to prove the correctness of the reduction.

• We first argue that if F is satisfiable, then there is an assignment that satisfies F ′.

For the shorter clauses, we just set the y-variables arbitrarily. For the longer clause
it is slightly more tricky.

• We then argue that if F is not satisfiable, then F ′ is not satisfiable.

Fix an assignment to the x variables. Then there is a clause in F that is not satisfied.
We argue that one of the derived clauses in F ′ is not satisfied.


