
Bocconi University — 30516: Theoretical Computer Science Handout LN16
Professor Luca Trevisan November 19, 2019

Notes for Lecture 16

1 Tractable and Intractable Problems

So far, almost all of the problems that we have studied have had complexities that are
polynomial, i.e. whose running time T (n) has been O(nk) for some fixed value of k. Typically
k has been small, 3 or less. We will let P denote the class of all problems whose solution
can be computed in polynomial time, i.e. O(nk) for some fixed k, whether it is 3, 100, or
something else. We consider all such problems efficiently solvable, or tractable. Notice that
this is a very relaxed definition of tractability, but our goal in this lecture and the next
few ones is to understand which problems are intractable, a notion that we formalize as not
being solvable in polynomial time. Notice how not being in P is certainly a strong way of
being intractable.

We will focus on a class of problems, called the NP-complete problems, which is a class of
very diverse problems, that share the following properties: we only know how to solve those
problems in time much larger than polynomial, namely exponential time, that is 2O(nk) for
some k; and if we could solve one NP-complete problem in polynomial time, then there is
a way to solve every NP-complete problem in polynomial time.

There are two reasons to study NP-complete problems. The practical one is that if you
recognize that your problem is NP-complete, then you have three choices:

1. you can use a known algorithm for it, and accept that it will take a long time to solve
if n is large;

2. you can settle for approximating the solution, e.g. finding a nearly best solution rather
than the optimum; or

3. you can change your problem formulation so that it is in P rather than being NP-
complete, for example by restricting to work only on a subset of simpler problems.

Most of this material will concentrate on recognizing NP-complete problems (of which
there are a large number, and which are often only slightly different from other, familiar,
problems in P) and on some basic techniques that allow to solve some NP-complete problems
in an approximate way in polynomial time (whereas an exact solution seems to require
exponential time).

The other reason to study NP-completeness is that one of the most famous open problem
in computer science concerns it. We stated above that “we only know how to solve NP-
complete problems in time much larger than polynomial” not that we have proven that NP-
complete problems require exponential time. Indeed, this is the million dollar question,1

one of the most famous open problems in computer science, the question whether “P =
NP?”, or whether the class of NP-complete problems have polynomial time solutions. After

1This is not a figure of speech. See http://www.claymath.org/prizeproblems.

Notes for Lecture 16 2

decades of research, everyone believes that P6=NP, i.e. that no polynomial-time solutions
for these very hard problems exist. But no one has proven it. If you do, you will be very
famous, and have enough money to buy a one-bedroom condo in San Francisco.

So far we have not actually defined what NP-complete problems are. This will take some
time to do carefully, but we can sketch it here. First we define the larger class of problems
called NP: these are the problems where, if someone hands you a potential solution, then
you can check whether it is a solution in polynomial time. For example, suppose the problem
is to answer the question “Does a graph have a simple path of length |V |?”. If someone
hands you a path, i.e. a sequence of vertices, and you can check whether this sequence
of vertices is indeed a path and that it contains all vertices in polynomial time, then the
problem is in NP. It should be intuitive that any problem in P is also in NP, because are
all familiar with the fact that checking the validity of a solution is easier than coming up
with a solution. For example, it is easier to get jokes than to be a comedian, it is easier to
have average taste in books than to write a best-seller, it is easier to read a textbook in a
math or theory course than to come up with the proofs of all the theorems by yourself. For
all this reasons (and more technical ones) people believe that P6=NP, although nobody has
any clue how to prove it. (But once it will be proved, it will probably not be too hard to
understand the proof.)

The NP-complete problems have the interesting property that if you can solve any one
of them in polynomial time, then you can solve every problem in NP in polynomial time.
In other words, they are at least as hard as any other problem in NP; this is why they are
called complete. Thus, if you could show that any one of the NP-complete problems that
we will study cannot be solved in polynomial time, then you will have not only shown that
P6=NP, but also that none of the NP-compete problems can be solved in polynomial time.
Conversely, if you find a polynomial-time algorithm for just one NP-complete problem, you
will have shown that P=NP.2

2 Decision Problems

To simplify the discussion, we will consider only problems with Yes-No answers, rather than
more complicated answers. For example, consider the Traveling Salesman Problem (TSP)
on a graph with nonnegative integer edge weights. There are two similar ways to state it:

1. Given a weighted graph, what is the minimum length cycle that visits each node
exactly once? (If no such cycle exists, the minimum length is defined to be ∞.)

2. Given a weighted graph and an integer K, is there a cycle that visits each node exactly
once, with weight at most K?

Question 1 above seems more general than Question 2, because if you could answer Question
1 and find the minimum length cycle, you could just compare its length to K to answer
Question 2. But Question 2 has a Yes/No answer, and so will be easier for us to consider. In

2Which still entitles you to the million dollars, although the sweeping ability to break every cryptographic
protocol and to hold the world banking and trading systems by ransom might end up being even more
profitable.

Notes for Lecture 16 3

Reduction R Algorithm for B

Algorithm for A

‘‘yes’’

‘‘no’’

input of A

x R(x)

(input
of B)

Figure 1: A reduction.

particular, if we show that Question 2 is NP-complete (it is), then that means that Question
1 is at least as hard, which will be good enough for us.3

Another example of a problem with a Yes-No answer is circuit satisfiability (which we
abbreviate CSAT). Suppose we are given a Boolean circuit with n Boolean inputs x1, ..., xn
connected by AND, OR and NOT gates to one output xout. Then we can ask whether
there is a set of inputs (a way to assign True or False to each xi) such that xout =True. In
particular, we will not ask what the values of xi are that make xout True.

If A is a Yes-No problem (also called a decision problem), then for an input x we denote
by A(x) the right Yes-No answer.

3 Reductions

Let A and B be two problems whose instances require Yes/No answers, such as TSP and
CSAT. A reduction from A to B is a polynomial-time algorithm R which transforms inputs
of A to equivalent inputs of B. That is, given an input x to problem A, R will produce an
input R(x) to problem B, such that x is a “yes” input of A if and only if R(x) is a “yes”
input of B. In a compact notation, if R is a reduction from A to B, then for every input x
we have A(x) = B(R(x)).

A reduction from A to B, together with a polynomial time algorithm for B, constitute
a polynomial algorithm for A (see Figure1). For any input x of A of size n, the reduction R
takes time p(n)—a polynomial—to produce an equivalent input R(x) of B. Now, this input
R(x) can have size at most p(n)—since this is the largest input R can conceivably construct
in p(n) time. If we now submit this input to the assumed algorithm for B, running in time
q(m) on inputs of size m, where q is another polynomial, then we get the right answer of
x, within a total number of steps at most p(n) + q(p(n))—also a polynomial!

3It is, in fact, possible to prove that Questions 1 and 2 are equally hard.

Notes for Lecture 16 4

We have seen many reductions so far, establishing that problems are easy (e.g., from
matching to max-flow). In this part of the class we shall use reductions in a more sophis-
ticated and counterintuitive context, in order to prove that certain problems are hard. If
we reduce A to B, we are essentially establishing that, give or take a polynomial, A is no
harder than B. We could write this as

A ≤ B

an inequality between the complexities of the two problems. If we know B is easy, this
establishes that A is easy. If we know A is hard, this establishes B is hard. It is this latter
implication that we shall be using soon.

4 Definition of Some Problems

Before giving the formal definition of NP and of NP-complete problem, we define some
problems that are NP-complete, to get a sense of their diversity, and of their similarity to
some polynomial time solvable problems.

In fact, we will look at pairs of very similar problems, where in each pair a problem is
solvable in polynomial time, and the other is presumably not.

• minimum spanning tree: Given a weighted graph and an integer K, is there a tree
that connects all nodes of the graph whose total weight is K or less?

• travelling salesman problem: Given a weighted graph and an integer K, is there
a cycle that visits all nodes of the graph whose total weight is K or less?

Notice that we have converted each one of these familiar problems into a decision prob-
lem, a “yes-no” question, by supplying a goal K and asking if the goal can be met. Any
optimization problem can be so converted

If we can solve the optimization problem, we can certainly solve the decision version (ac-
tually, the converse is in general also true). Therefore, proving a negative complexity result
about the decision problem (for example, proving that it cannot be solved in polynomial
time) immediately implies the same negative result for the optimization problem.

By considering the decision versions, we can study optimization problems side-by-side
with decision problems (see the next examples). This is a great convenience in the theory
of complexity which we are about to develop.

• Eulerian graph: Given a directed graph, is there a closed path that visits each edge
of the graph exactly once?

• Hamilitonian graph: Given a directed graph, is there a closed path that visits each
node of the graph exactly once?

A graph is Eulerian if and only if it is strongly connected and each node has equal in-
degree and out-degree; so the problem is squarely in P There is no known such characterization—
or algorithm—for the Hamilton problem (and notice its similarity with the TSP).

Notes for Lecture 16 5

• circuit value: Given a Boolean circuit, and its inputs, is the output T?

• circuit SAT: Given a Boolean circuit, is there a way to set the inputs so that the
output is T? (Equivalently: If we are given some of its inputs, is there a way to set
the remaining inputs so that the output is T.)

We know that circuit value is in P: also, the näıve algorithm for that evaluates all
gates bottom-up is polynomial. How about circuit SAT? There is no obvious way to solve
this problem, sort of trying all input combinations for the unset inputs—and this is an
exponential algorithm.

General circuits connected in arbitrary ways are hard to reason about, so we will consider
them in a certain standard form, called conjunctive normal form (CNF): Let x1, ..., xn be
the input Boolean variables, and xout be the output Boolean variable. Then a Boolean
expression for xout in terms of x1, ..., xn is in CNF if it is the AND of a set of clauses, each
of which is the OR of some subset of the set of literals {x1, ..., xn,¬x1, ...,¬xn}. (Recall
that “conjunction” means ”and”, whence the name CNF.) For example,

xout = (x1 ∨ ¬x1 ∨ x2) ∧ (x3 ∨ x2 ∨ ¬x1) ∧ (x1 ∨ x2) ∧ (x3)

is in CNF. This can be translated into a circuit straightforwardly, with one gate per logical
operation. Furthermore, we say that an expression is in 2-CNF if each clause has two
distinct literals. Thus the above expression is not 2-CNF but the following one is:

(x1 ∨ ¬x1) ∧ (x3 ∨ x2) ∧ (x1 ∨ x2)

3-CNF is defined similarly, but with 3 distinct literals per clause:

(x1 ∨ ¬x1 ∨ x4) ∧ (x3 ∨ x2 ∨ x1) ∧ (x1 ∨ x2 ∨ ¬x3)

• 2SAT: Given a Boolean formula in 2-CNF, is there a satisfying truth assignment to
the input variables?

• 3SAT: Given a Boolean formula in 3-CNF is there a satisfying truth assignment to
the input variables?

2SAT can be solved by graph-theoretic techniques in polynomial time. For 3SAT,
no such techniques are available, and the best algorithms known for this problems are
exponential in the worst case, and they run in time roughly (1.4)n, where n is the number
of variables. (Already a non-trivial improvement over 2n, which is the time needed to check
all possible assignments of values to the variables.)

• matching: Given a boys-girls compatibility graph, is there a complete matching?

• 3D matching: Given a boys-girls-homes compatibility relation (that is, a set of boy-
girl-home “triangles”), is there a complete matching (a set of disjoint triangles that
covers all boys, all girls, and all homes)?

We know that matching can be solved by a reduction to max-flow. For 3D matching
there is a reduction too. Unfortunately, the reduction is from 3SAT to 3D matching—and
this is bad news for 3D matching. . .

Notes for Lecture 16 6

• unary knapsack: Given integers a1, . . . , an, and another integer K in unary, is there
a subset of these integers that sum exactly to K?

• knapsack: Given integers a1, . . . , an, and another integer K in binary, is there a
subset of these integers that sum exactly to K?

unary knapsack is in P—simply because the input is represented so wastefully, with
about n + K bits, so that a O(n2K) dynamic programming algorithm, which would be
exponential in the length of the input if K were represented in binary, is bounded by a
polynomial in the length of the input. There is no polynomial algorithm known for the real
knapsack problem. This illustrates that you have to represent your input in a sensible
way, binary instead of unary, to draw meaningful conclusions.

5 NP, NP-completeness

Intuitively, a problem is in NP if it can be formulated as the problem of whether there is a
solution

• They are small. In each case the solution would never have to be longer than a
polynomial in the length of the input.

• They are easily checkable. In each case there is a polynomial algorithm which takes
as inputs the input of the problem and the alleged solution, and checks whether the
solution is a valid one for this input. In the case of 3SAT, the algorithm would just
check that the truth assignment indeed satisfies all clauses. In the case of Hamilton
cycle whether the given closed path indeed visits every node once. And so on.

• Every “yes” input to the problem has at least one solution (possibly many), and each
“no” input has none.

Not all decision problems have such certificates. Consider, for example, the problem
non-Hamiltonian graph: Given a graph G, is it true that there is no Hamilton cycle in
G? How would you prove to a suspicious person that a given large, dense, complex graph
has no Hamilton cycle? Short of listing all cycles and pointing out that none visits all nodes
once (a certificate that is certainly not succinct)?

These are examples of problems in NP:

• Given a graph G and an integer k, is there a simple path of length at least k in G?

• Given a set of integers a1, . . . , an, is there a subset S of them such that
∑

a∈S a =∑
a6∈S a?

We now come to the formal definition. If x is some data, like a graph or a sequence of
number, we use the notation length(x) or, more briefly |x|, to denote the number of bits
that it takes to store (an encoding of) the data x.

Definition 1 A problem A is NP if there exist a polynomial ` and a polynomial-time
algorithm V () such that x is a YES-input for problem A if and only if there exists a solution
y, with length(y) ≤ `(length(x)) such that V (x, y) outputs YES.

Notes for Lecture 16 7

We also call P the set of decision problems that are solvable in polynomial time. Observe
every problem in P is also in NP.

We say that a problem A is NP-hard if for every N in NP, N is reducible to A, and
that a problem A is NP-complete if it is NP-hard and it is contained in NP. As an exercise
to understand the formal definitions, you can try to prove the following simple fact, that is
one of the fundamental reasons why NP-completeness is interesting.

Lemma 2
If A is NP-complete, then A is in P if and only if P=NP.

So now, if we are dealing with some problem A that we can prove to be NP-complete,
there are only two possibilities:

• A has no efficient algorithm.

• All the infinitely many problems in NP, including factoring and all conceivable opti-
mization problems are in P.

If P=NP, then, given the statement of a theorem, we can find a proof in time polynomial
in the number of pages that it takes to write the proof down.

If it was so easy to find proof, why do papers in mathematics journal have theorems
and proofs, instead of just having theorems. And why theorems that had reasonably short
proofs have been open questions for centuries? Why do newspapers publish solutions for
crossword puzzles? If P=NP, whatever exists can be found efficiently. It is too bizarre to
be true.

In conclusion, it is safe to assume P 6= NP , or at least that the contrary will not be
proved by anybody in the next decade, and it is really safe to assume that the contrary
will not be proved by us in the next month. So, if our short-term plan involves finding an
efficient algorithm for a certain problem, and the problem turns out to be NP-hard, then
we should change the plan.

6 Decision Problems, Search Problems and Optimization Prob-
lems

We have described the theory of NP-completeness in terms of decision problems, but, in
previous lectures, many of the interesting problems we have talked about were optimization
problems, like shortest path, maximum flow and TSP. In an optimization problem, given
the input data, we have a set of possible feasible solution, each solution has a cost or value,
and we are interested in the solution of minimum cost, or maximum value. Other problems,
like the perfect matching problem, were search problems, in which, given the input data, we
have a (possibly empty) set of valid solutions, and we want to find one, if one exists.

• An NP search problem is a search problem in which the property of being a valid
solution for a given input is efficiently testable, and the length of valid solutions scales
at most polynomially in the length of the the input data.

Notes for Lecture 16 8

More precisely, an NP search problem S is specified by a polynomial time algorithm
V (·, ·) and a polynomial `(·) such that y is a valid solution to input x if and only if
|y| ≤ `(|x|) and V (x, y) = True. Given x, our goal is to output a valid solution, if
one exists

• An NP decision problem D associated to an NP search problem S is, given x, decide
whether there exists at least one valid solution for x (this is equivalent to the definition
that we have given above).

• An NP maximization problem O is an NP search problem specified by a polynomial
time algorithm V (·, ·) and a polynomial bound `(·), in which we also have a polynomial
time computable function f(·, cdot) that assigns a value to each valid solution for a
given input, so that, for a given input x, the problem to solve is

max
y:|y|<`(|x) and V (x,y)=True

f(x, y)

(NP minimization problems are defined analogously)

Note that essentially every reasonable optimization or search problem is of NP type,
because otherwise it would mean that either the notion of value of a solution or of validity
of a solution are poorly specified (do not come with a formula or a rule that can be algo-
rithmically implemented in polynomial time) or that the length of the output that we are
required to produce scales super-polynomially in the size of the input data, meaning that
it is just impossible to have polynomial time algorithms (because it is impossible to even
write down the solution in time polynomial in the size of the input data).

We conclude with a couple of observations showing that, even though we developed
our theory in terms of decision problems, it talks about search problems and optimization
problems as well.

The first observation is that if we are interested in an NP maximization problem, we
can define an NP search problem that is essentially equivalent: given an input x for the
maximization problem and a parameter k, the search problem asks if there is a feasible
solution y of cost at least k. Note that this is an NP search problem by definition, and that,
if we have an algorithm for this search problem then we can derive an algorithm for the
optimization problem by binary search. (How would you associate an NP search problem
in the same way to an NP minimization problem?).

The second observation is that if we have an NP search problem S, then we can associate
an NP decision problem D such that an efficient algorithm for D can be easily modified
into an efficient algorithm for S. If S is defined by the validity checking algorithm V (·, ·)
and the length bound `(·), then we define D as the problem, given x and w, is there a string
z such that V (x,w.z) = True, where w.z denotes the concatenation of w and z. This is
an NP decision problem by definition, because a valid z satisfies |z| ≤ |w.z| ≤ |x| ≤ |x,w|
and the condition V (x,w.z) = True can be checked in polynomial time. Furthermore, if we
have a polynomial time algorithm for D, we can easily use it to derive a polynomial time
algorithm for S, constructing a valid solution, if one exists, one bit at a time. In conclusion
we have

Notes for Lecture 16 9

Fact 3
If P = NP , then all NP search problems and all NP optimization problems can be solved
in polynomial time

