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Notes for Lecture 3

October 7: corrected typo in pseudocode of “select” algorithm

Today we discuss an elegant and efficient divide-and-conquer algorithm for finding the
median of a sequence of numbers, and we begin to talk about graphs

1 Median in Linear Time

The median of a sequence A = A[1], . . . , A[n] is the value that would appear in position⌈
n
2

⌉
after sorting the sequence. For example the median of 5, 1, 150, 7, 2 is 5.

More generally, we say that a value has rank k in a sequence A[1], . . . , A[n] if, after
sorting the sequence, we would find that value in position k. For example the minimum has
rank 1. Note that a sequence can have repeated values, so the value of rank k could be the
same as the value of rank k + 1.

Given a sequence A[1], . . . , A[n] and a parameter k, we would like to find the value of
rank k in the sequence.

One possible approach is to sort the sequence and look up the value in the k-th position
after sorting. This would take time O(n log n). We will describe a randomized algorithm
whose expected running time is O(n).

The divide-and-conquer idea is the following. Choose a position i in the sequence (we
will discuss later how to choose it), and call v = A[i] the value we see in this position.
In time O(n), count how many values in the sequence are smaller than v, equal to v, and
bigger than v; call these counts s, eq and b, respectively.

If we sorted A, we would then see s elements smaller than v, then we would see v
repeated eq times, and finally we would see b elements bigger than v. Now let us think of
where the position k falls.

• If s + 1 ≤ k ≤ s + eq, then the rank k value is v and we are done.

• If k ≤ s, then the rank k value is one of the values smaller than v. So we can construct,
in O(n) time, the sequence S of s elements smaller than v, and recursively look for
the rank-k element of this sequence.

• If k ≥ s + eq + 1, then the rank-k value of the sequence is bigger than v, and it has
rank k − eq − s among the elements of A bigger than v. Thus can construct the list
B of elements of A bigger than v and recursively look for the value of rank k− eq− s
there.

Note that, no matter how we choose i, each recursive call either terminates with the
correct output, or creates a recursive call with a smaller input, because both s and b are
smaller than n.
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To make the algorithm run as fast we possible, we want the recursive calls to be made
on subsequences as small as possible. Although there is a clever way of choosing i that
leads to an O(n) time algorithm, we will describe a simple and very efficient randomized
strategy: we just pick i uniformly at random between 1 and n. This leads to the following
algorithm

select(A, k)

• Let n be the length of A and choose i uniformly at random in {1, . . . , n}

• Let s, eq, b be, respectively, the number of elements of A that are smaller, equal, and
bigger than A[i]

• if s + 1 ≤ k ≤ s + eq then return A[i]

• else if 1 ≤ k ≤ s then construct sequence S of elements of A smaller than A[i] and
return select(S, k)

• else construct sequence B of elements of A bigger than A[i] and
return select (B, k − s− eq)

To analyze the running time, the first observation is that the algorithm takes O(n) time
plus the time that it takes to execute one recursive call.

In order to understand the size of the input in the recursive call, let us a call a choice
of i good if both s and b are at most 3n/4. It is not difficult to see that a random i has
probability at least 1/2 of being good, because if A[i] has rank between n/4 and 3n/4 then
i is good, and there are n/2 choices of i with such property.

The next observation is that, on average, the number of recursive calls made until a
good i is selected is at most 2, because when a good event happens with probability p the
average number of attempts until the event happen is 1/p.

Now let ET (n) be the expected running time of the algorithm on a worst-case sequence
of length n. We will bound ET (n) by considering the expected amount of time spent on
recursive calls until the first good i is selected, plus the remaining time. The expected
amount time spent until a good i is selected is O(n), because on average we have two
recursive calls, each taking time O(n); the remaining time is at most ET (3n/4), because
after the first good i is selected the input size is at most 3n/4.

Putting this observations together, we have

ET (n) ≤ O(n) + ET (3n/4)

and we can use the master theorem to solve it to ET (n) = O(n).

2 Graphs

We discussed the definitions of directed graph, undirected graph, paths, and of connected
components in undirected graphs, and their representation as adjacency matrices or adja-
cency lists, following Section 3.1 of Dasgupta. We also started to discuss the DFS algorithm,
but we postpone all material about DFS to the notes for Lecture 4.


