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Abstract

Gowers [Gow98, Gow01] introduced, for d ≥ 1, the notion of dimension-d uniformity U d(f)
of a function f : G → C, where G is a finite abelian group. Roughly speaking, if a function has
small Gowers uniformity of dimension d, then it “looks random” on certain structured subsets
of the inputs.

We prove the following “inverse theorem.” Write G = G1 × · · · × Gn as a product of
groups. If a bounded balanced function f : G1 × · · ·Gn → C is such that Ud(f) ≥ ε, then
one of the coordinates of f has influence at least ε/2O(d). Other inverse theorems are known
[Gow98, Gow01, GT05, Sam05], and U3 is especially well understood, but the properties of
functions f with large Ud(f), d ≥ 4, are not yet well characterized.

The dimension-d Gowers inner product 〈{fS}〉Ud of a collection {fS}S⊆[d] of functions is a
related measure of pseudorandomness. The definition is such that if all the functions fS are
equal to the same fixed function f , then 〈{fS}〉Ud = Ud(f).

We prove that if fS : G1 × · · · × Gn → C is a collection of bounded functions such that
|〈{fS}〉Ud | ≥ ε and at least one of the fS is balanced, then there is a variable that has influence
at least ε2/2O(d) for at least four functions in the collection.

Finally, we relate the acceptance probability of the “hypergraph long-code test” proposed
by Samorodnitsky and Trevisan to the Gowers inner product of the functions being tested and
we deduce the following result: if the Unique Games Conjecture is true, then for every q ≥ 3
there is a PCP characterization of NP where the verifier makes q queries, has almost perfect
completeness, and soundness at most 2q/2q. For infinitely many q, the soundness is (q + 1)/2q.
Two applications of this results are that, assuming that the unique games conjecture is true,
it is hard to approximate Max kCSP within a factor 2k/2k (or even (k + 1)/2k, for infinitely
many k), and it is hard to approximate Independent Set in graphs of degree D within a factor
(log D)O(1)/D.

1 Introduction

We return to the study of the relation between number of queries and error probability in proba-
bilistically checkable proofs.
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The PCP Theorem [AS98, ALM+98] states that it is possible to encode certificates of satisfiability
for SAT instances (and, more generally, for every problem in NP) in such a way that a probabilistic
verifier can check the validity of the certificate with high confidence after inspecting only a constant
number of bits. We write SAT ∈ PCPc,s[r(n), q] if there is a verifier that uses at most r(n) random
bits, where n is the size of the formula, accepts encoding of valid proofs with probability at least
c (the completeness probability of the verifier) and accepts purported encodings of proofs with
probability at most s (the soundness error of the verifier) if the formula is unsatisfiable. The PCP
Theorem states that there exists a constant k such that SAT ∈ PCP1,1/2[O(log n), k]. Improvements
and variants of the PCP Theorem and their applications to the study of the approximability of
optimization problems are too many to summarize here, and we refer the reader to the chapter on
hardness of approximation in Vazirani’s book [Vaz01] and to some recent survey papers [Aro02,
Fei02, Tre04].

In this paper we are interested in the following question: for a given number of queries, what is
the highest confidence that we can have in the validity of the proof? That is, for a given value of
q, what is the smallest value s = s(q) for which SAT ∈ PCP1−δ,s+δ[O(log n), q] for every δ > 0?
We call this parameter s the soundness of the PCP construction. A good measure of the trade-off
between the number q of queries and the soundness s is the so-called amortized query complexity,
defined as q̄ = q/(log2 s−1).

A simple argument shows that, unless P = NP , s must be at least 1/2q, that is, the amortized
query complexity must be at least 1. A more careful argument gives a lower bound of 2/2q [Tre98a]
on the soundness, which was recently improved to Ω( q

log q · 1
2q ) by Hast [Has05]. (Hast’s result can

also be stated as giving a lower bound of 1 + (1 − o(1)) log q
q to the amortized query complexity of

a q-query PCP.) The PCP Theorem shows that we can have s = 1/2Ω(q), and the authors showed
that can have s ≤ 22

√
q/2q [ST00]. (That is, the amortized query complexity can be as low as

1+O(1/
√

q).) Our proof was simplified by H̊astad and Wigderson [HW03], and the soundness was

improved to s ≤ 2
√

2q/2q by Engebretsen and Holmerin [EH05]. As we discuss below, 2Θ(
√

q)/2q

was a natural limit for the soundness achievable with current techniques.

In this paper, assuming Khot’s Unique Games Conjecture [Kho02], we present an improvement to
s = (q + 1)/2q. Our analysis is based on a theorem, which is probably of independent interest,
bounding the Gowers uniformity of a given function in terms of the influence of its variables.

1.1 Linearity Tests and PCP

The linearity testing problem captures most of the technical difficulties of the the construction of
PCP constructions, and it is a good starting point.

Let us call a function f : {0, 1}n → {−1, 1} linear if it is a homomorphism between the group {0, 1}n

(where the operation is bitwise XOR, written additively) and the group {−1, 1} (where the operation
is multiplication). Equivalently, f is linear if and only if it can be written as f(x1, . . . , xn) =
(−1)

�
i∈S xi for some set S ⊆ [n]. We use the notation χS(x) := (−1)

�
i∈S xi .

In the linearity testing problem we are given oracle access to a boolean function f : {0, 1}n →
{−1, 1} and we would like to distinguish between the following extreme settings:

1. f is linear;
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2. for every S, the agreement between f and χS is at most 1/2 + ε.

By agreement between a function f and a function g we mean the fraction of inputs on which they
are equal. We say that a test has error-probability at most e if in case (1) it accepts with probability
1 and in case (2) it accepts with probability at most e + ε′, where ε′ → 0 when ε → 0.

Blum, Luby and Rubinfeld [BLR93] define a very simple such test, that makes only three queries
into f :

BLR-Test (f)
choose x, y uniformly at random in {0, 1}n

accept if and only if f(x) · f(y) = f(x + y)

Bellare et al. [BCH+96] give a tight analysis of this test, showing that if it accepts with probability
at least 1/2 + ε, then f has agreement at least 1/2 + ε with some linear function. According to our
above definition, the BLR test has error probability at most 1/2.

There are at least two ways in which such a result needs to be extended before it can be used in a
PCP construction.

First of all, we would like to consider a case where two or more functions are given as an oracle,
and the test wants to distinguish between the following cases:

1. The functions given as an oracle are all equal to the same linear function

2. No two functions have agreement more than 1/2 + ε (or less than 1/2 − ε) with the same
linear function

There is a natural extension of the BLR test to this setting:

3-functions-BLR-Test (f, g, h)
choose x, y uniformly at random in {0, 1}n

accept if and only if f(x) · g(y) = h(x + y)

Aumann et al. [AHRS01] show that if this test accepts with probability 1/2 + ε, then there is a
linear function χS such that f, g, h have all agreement at least 1/2 + ε/3 with either χS or −χS .

The second change is that, for the sake of PCP constructions, we are especially interested in linear
functions χS with a small S. We call functions of the form χ{i}(x) = (−1)xi long codes. In a long
code test we are given several functions and, in a commonly used definition, we want to distinguish
the following cases:

1. The functions given as an oracle are all equal to the same long code;

2. For every small S, no two functions have agreement more than 1/2 + ε (or less than 1/2− ε)
with χS .

We say that such a test has error probability at most e if, whenever it accepts with probability
more than e + ε, there are constants ε′, d, depending only on ε, and a set S, |S| ≤ d, such that at
least two of the given functions have agreement at least 1/2 + ε′ with χS or −χS.
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A test satisfying this definition can be obtained from the BLR test by adding noise to each query.
Let µδ be the probability distribution over {0, 1}n defined by picking n independent copies of a
biased coin that returns 0 with probability 1−δ and 1 with probability δ, and consider the following
test:

δ-noisy-3-functions-BLR-Test (f, g, h)
choose x, y uniformly at random in {0, 1}n

sample η1, η2, η3 indipendently according to µδ

accept if and only if f(x + η1) · g(y + η2) = h(x + y + η3)

It is easy to see that in case (1), that is, when f, g, h are equal to the same long code, then the
test accepts with probability at least (1 − δ)3. H̊astad [H̊as01] shows1 that if the test accepts with
probability at least 1/2 + ε, then there is a set S of size at most poly(ε−1, δ−1) such that f, g, h all
have agreement at least 1/2 + ε/3 with χS or −χS.

Having a q-query test for this problem with error probability at most e is enough to construct
a PCP characterization of NP with query complexity q and soundness error about e, provided
that Khot’s unique games conjecture [Kho02] is true. (Further refinements are needed to derive an
unconditional result in [H̊as01].)

Given this logical path from the basic linearity testing problem to the task of constructing PCPs,
our plan in [Tre98b, ST98, ST00] was to devise linearity tests with good trade-offs between number
of queries and error probability, and then “translate” such tests into a PCP construction.

In [ST00] we devise a linearity tester whose asymptotic trade-off between number of queries and
error probability is optimal. The test, for k ≥ 2 is defined as follows:

Complete-Graph-Test (f, k)
choose x1, . . . , xk uniformly at random in {0, 1}n

accept if and only if
for every i 6= j, f(xi) · f(xj) = f(xi + xj)

Note that the test has query complexity q = k+
(

k
2

)

and runs
(

k
2

)

correlated copies of the BLR test.
If f is linear, then it is clearly accepted with probability 1. If f has agreement at most 1/2+ε, then
we already know that each of the

(k
2

)

tests accepts with probability at most 1/2 + ε. In [ST00] we

show that the
(k
2

)

tests behave almost mutually independently, and the probability that all accept

is at most 1/2(k
2) + ε′ ≈ 1/2q−√

2q. We also extended the test to the noisy case, the case of several
functions, and the setting (which we do not describe in this paper) which is sufficient to derive an
unconditional PCP characterization of NP.2

One might have thought that the following test would have achieved an even better trade-off
between number of queries and error probability:

1Such an analysis is implicit in H̊astad’s paper, and the result, as stated here, appears explicitely in [AHRS01].
2In this last step, we lost something in the soundness error, which became 1/2q−2

√
q , where q is the number of

queries. This was recently improved to 1/2q−√
2q , the same bound of the basic linearity test, by Engebretsen and

Holmerin [EH05].
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Complete-Hypergraph-Test (f, k)
choose x1, . . . , xk uniformly at random in {0, 1}n

accept if and only if
for every S ⊆ [k]: |S| ≥ 2.

∏

j∈S f(xj) = f(
∑

j∈S xj)

In the hypergraph test we make q = 2k − 1 queries and run 2k − k− 1 correlated copies of the BLR
test. If the tests behaved almost mutually independently for f far from linear, then the test would
have error probability ≈ (q + 1)/2q .

Unfortunately, the above statement fails already when k = 3 if we consider the function f(x) =
(−1)x1x2+···+xn−1xn . Such a function is very far from linear, but the 7 conditions of the hypergraph
test for k = 3 are not almost independent. In fact, much more generally, we prove in [ST00]
that if we run a q-query hypergraph test on f , then the test accepts with probability at least
2−q+Ω(

√
q). In Section 7 we generalize this result and prove that any linearity test that makes q

queries and that accepts linear functions with probability ≥ c must accept f with probability at
least (1 − c) + 2−q+Ω(

√
q).

Even though there is no more room for improvement in the basic linearity testing problem (or its
multi-function version, which is only harder), there is still hope for PCP, by using a more relaxed
formulation of the long code test. Several recent papers [DS05, Kho02, KR03, KKMO04, CKK+05,
KV05] define a long code test based not on closeness to linear functions χS with small S but based
on the notion of degree-d influence. We will define such a notion later (Section 2). For now, it
suffices to say that if we can solve a certain (relaxed) variant of the linearity test with a given
query complexity and error probability, then we can also test the long code with the same query
complexity and error probability. We say that the relaxed test has error probability e if:

1. if f is linear, then the test accepts with probability 1;

2. if the test accepts with probability e + ε, then there is a coordinate i that has influence at
least δ(ε) for f .

Influence (as opposed to “degree-d influence”) has a simple definition for boolean functions: the
influence of i for f is the probability that f is a non-constant function after we randomly fix all
coordinates of f except the i-th. If f has agreement 1/2 + ε with a non-constant linear function
χS , then f has variables of influence at least 2ε, but there are functions f that have influential
variables even though they are very far from all linear functions (this is why this test is a relaxation).
Intriguingly, in the function f(x) = (−1)x1x2+···+xn−1xn all variables have influence 1/2 ± o(1).

As we shall see later, we prove that the complete hypergraph test has error probability only

1/
(

22k−k−1
)

with respect to the above definition. That is, if a function f is accepted by the

test with probability more than 1/
(

22k−k−1
)

+ ε, then one of the variables of f has influence at

least δ(ε). We then generalize the test to the setting of several function (in which case we show
that at least two functions have an influential variable in common) and to the case of testing the
long code, resulting in a conditional PCP construction assuming the unique games conjecture.
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1.2 Szeméredi’s Theorem and Gowers Norms

We will use a definition that has been introduced by Gowers [Gow98, Gow01] in his seminal papers
on a new proof of Szeméredi’s Theorem.

Szeméredi’s Theorem states that any subset of the integers of positive density contains arbitrarily
long arithmetic progressions. The quantitative statement is that for every δ, k there is a n(δ, k)
such that if A is an arbitrary subset of the integers {1, . . . , N}, |A| ≥ δN , and N ≥ n(δ, k), then
A must contain an arithmetic progression of length k, that is, there are integers a, b such that
a, a + b, . . . , a + (k − 1)b all belong to A.

In Szeméredi’s original proof, which introduced the famous Szeméredi Regularity Lemma, n(δ, k)
grows very fast with k and δ−1: it is a tower of exponentials whose height is a tower of exponentials
whose height is polynomial in k and δ−1.

The case k = 3 had been settled earlier by Roth, with a simpler analytical proof that gave a
reasonable (doubly exponential) relation between n(δ, 3) and δ−1. Roth’s proof (like all other
proofs about arithmetic sequences in dense sets) is based on an iterative argument on δ: if δ is a
sufficiently large constant (say, 90%), then a random length-3 progression is contained in A with
positive probability, and so A contains some length-3 progressions. Otherwise (blurring, for the
moment, the distinction between progressions mod N and true progressions), one writes the fraction
of length-3 progressions in A as the number one would expect if A where a random set of density
δ, that is, a δ3 fraction of all length-3 progressions, minus an error term that equals

∑

g 6=0 f̂3
A(g),

the summation of the cubes of the non-zero Fourier coefficients of fA, the characteristic function
of A. One then considers two cases: if all Fourier coefficients of fA are small, then the error term
is smaller than δ3, and so A contains a positive fraction of all length-3 progressions in ZN . If
fA has a large Fourier coefficient, then one can reduce the task of finding a length-3 progression
in A to the task of finding a length-3 progression in a certain subset A′ of {1, . . . , N ′} of density
δ′ > δ +Ω(δ2). In this reduction, N ′ is about

√
N , one does no more than O(δ−1) such reductions,

so it’s enough to start with N = 22O(1/δ)
. We mention these technical details because they are

very similar to the analysis of the basic BLR linearity test in [BCH+96], where the acceptance
probability of the verifier is written as 1

2 + 1
2

∑

α f̂3(α), and so (i) if all Fourier coefficients of f are

small, then
∑

α f̂3(α) is small, and the test accepts with probability close to 1/2, while (ii) if one
Fourier coefficient is large, then f is close to a linear function (this part is trivial).

A way to look at both proofs is to think of a function f as being “pseudorandom” if all its
Fourier coefficients are small, and of a set A ⊆ [N ] to be pseudorandom if all the non-zero Fourier
coefficients of its characteristic function are small. Then one proves that, for a pseudorandom
function, the values f(x), f(y), f(x + y) are nearly independent random bits, and so, in particular,
f(x)f(y) = f(x+y) happens with probability approximately 1/2. For a psedorandom set of density
δ, the events x ∈ A, (x + r) ∈ A, (x + 2r) ∈ A also behave nearly independently for random x, r,
and they happen simultaneously with probability approximately δ3.

To prove Szeméredi’s Theorem for k ≥ 4 one might try to show that a pseudorandom set, as
defined above, has approximately the expected number of length-k progression. This, unfortunately,
does not seem to be true, and sets whose characteristic function is defined in terms of a degree-
2 polynomial are basic counterexamples even for k = 4. (See [Gow01].) Recall that something
similar happens in the hypergraph test, where a function defined in terms of a degree-2 polynomial
is very far from linear (and so all its Fourier coefficients are small), but the tests performed in the

6



hypergraph test do not behave independently.

Gowers [Gow98, Gow01] resolves this problem by introducing a more refined measure of pseudo-
randomness. For d ≥ 1 and f : G → R, where G is a group, he defines the quantity

Ud(f) := E
x,x1,...,xd





∏

S⊆[d]

f

(

x +
∑

i∈S

xi

)





and there is a similar definition for f : G → C, in which all evaluations of f() when |S| is odd are
conjugated. (See definitions in Sections 2 and 6.)

Gowers goes on to prove that if A ⊆ ZN is a subset of density δ, f : ZN → [−1, 1] is a normalized
version of the characteristic function, and U d(f) is sufficiently small (as a function of d and δ,
but not of N) then A must contain arithmetic progressions of length d + 1. The hard part of
Gowers’s work is then to show that if U d(f) is large, then finding progressions in A reduces to
finding progressions in a set A′ ⊆ ZN ′ of density strictly larger than δ.

Towards this goal, Gowers proves certain structural properties of functions f : ZN → C, N prime,
having non-trivially large U d value. Such functions are shown to have a certain “local correlation”
with degree (d − 1)-polynomials. Green and Tao [GT05] study functions f : G → C with large U 3,
and, provided that the order of G is not divided by and 2 and 3, prove a certain “global correlation”
between such functions and degree-2 polynomials.3 Samorodnitsky [Sam05] proves such a result
for functions f : {0, 1}n → R.

Not much is known about functions f : G → C having large U d when d ≥ 4 and G is a general
group.

1.3 Our Results

We prove that if f : G1×· · ·×Gn → C is a bounded balanced function and U d(f) ≥ ε, then there is
a variable that has influence at least ε/2O(d) for f . Above, we only defined influence in the boolean
case, but a more general definition applies to functions mapping from an arbitrary product space
into the complex numbers.

Green and Tao introduce a notion related to the U d measures of pseudorandomness. For 2d functions
{fS}S⊆[d], fS : G → R, their Gowers inner product is defined as

〈{fS}〉Ud := E
x,x1,...,xd





∏

S⊆[d]

fS

(

x +
∑

i∈S

xi

)





In the case of complex-valued functions, the terms with odd |S| are conjugated. Note that if all
the functions fS are identical to the same function f then 〈{fS}〉Ud = Ud(f).

Our second result is that if f : G1 × · · · × Gn → C are bounded functions such that at least one
of them is balanced, and 〈{fS}〉Ud ≥ ε, then there is a variable that has influence at least ε2/2O(d)

for at least four of the functions in the collection.

3The “globality” of this result deteriorates with the order of the group, and a result as stated is false for, say, ZN ,
N prime.
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Finally, we come back to the analysis of the hypergraph test. H̊astad and Wigderson [HW03]
significantly simplified the analysis of the graph test of [ST00] by using an averaging argument that
reduces the analysis of the graph test to the analysis of the 3-functions BLR test.

We apply a similar averaging argument and reduce the analysis of the hypergraph test to the task
of bounding expressions of the form

E
x1,...,xd

∏

S⊆[d]

fS

(

∑

i

xi

)

(1)

where d ≤ k and the functions fS : {0, 1}n → {−1, 1} are derived in a certain way from the function
being tested. The expression looks very similar to the expression for the Gowers inner product,
and in fact it is easy to see that if the Expression in (1) is large, then the Gowers inner product of
a related set of functions is also large. From our results, it follows that at least four of these new
functions must share an influential variable, from which it follows that two of fS must share an
influential variable and so the function being tested has an influential variable. (See Section 7.)

This analysis easily extends to the case of testing multiple functions and to the noisy case. We
present the analysis of the noisy, multi-function case in Section 8.

This leads, under the unique games conjecture, to a PCP characterization of NP with q queries
and error probability (q + 1)/2q , if q is of the form 2k − 1. As corollary, we obtain (q + 1)/2q

hardness of approximation for qCSP and (poly log D)/D hardness of approximation for independent
set in graphs of maximum degree D. In terms of amortized query complexity, we show that
1+(1+o(1)) log q

q is achievable assuming the unique games conjecture, and Hast’s algorithm [Has05]
implies that this is tight up to the lower order term.

1.4 Organization of the paper

We develop the basic theory of influence of variables and Gowers uniformity for the case G = Z2

in Section 2. We prove our connection between influence of variables and Gowers uniformity in
the case G = Z

n
2 in Sections 3, 4, 5. Section 6 shows how to generalize our results to the case of

general abelian groups; only the result of Section 3 requires a new proof, while the other results
follow by making syntactic changes in the proof for the boolean case. An application to generalized
linearity testing is presented in Section 7, together with lower bounds establishing the tightness of
our analysis. An application to PCP is presented in Section 8.

The paper ends up being quite long because, for the sake of readability, we first prove some results
in important special cases before proceeding to the more general statements. A reader interested
only in the PCP application may skip Section 6. A reader interested only in our results on Gowers
uniformity may skip Sections 7 and 8.

2 Preliminaries

In this section we develop the theory of Gowers uniformity and Fourier transforms for functions
f : Z

n
2 → R. Generalized definitions for the setting of functions f : G1 ×· · ·×Gn → C will be given

later in Section 6.
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For a positive integer n, we use [n] to denote the set {1, 2, . . . , n}. We use the convention that [0]
is the empty set.

For two reals a < b we use [a, b] to denote the interval {x ∈ R : a ≤ x ≤ b}.

2.1 Fourier Analysis

For a subset S ⊆ [n], define the function χS : {0, 1}n → R as

χS(x1, . . . , xn) = (−1)
�

i∈S xi

We use the convention that an empty sum equals zero, so χ∅(x) = 1 for every x.

For two functions f, g : {0, 1}n → R, define their inner product as

〈f, g〉 := E
x∈{0,1}n

f(x)g(x)

Then it is easy to see that the functions χS are orthonormal with respect to this inner product,
that is, for every S,

〈χS , χS〉 = 1

and, for every S 6= T ,
〈χS , χT 〉 = 0

This implies that the functions χS are linearly independent and, since there are 2n such functions
and the space of functions f : {0, 1}n → R has dimension 2n, it follows that the χS are a basis for
such space.

Every function f : {0, 1}n → R can therefore be written as

f(x) =
∑

S⊆[n]

f̂(S)χS(x)

where the coefficients f̂(S) in the linear combination satisfy

f̂(S) = 〈f, χS〉

and are called the Fourier coefficients of f . The function f̂() mapping sets S into coefficients f̂(S)
is the Fourier transform of f . We will make use of the following equality, called Parseval’s identity
(or Plancherel’s identity).

∑

S

f̂2(S) = E
x

f2(x) (2)

In particular, if f : {0, 1}n → [−1, 1], then
∑

S f̂2(S) ≤ 1, and so |f̂(S)| ≤ 1 for every S.
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2.2 Influence of Variables

If f : {0, 1}n → {−1, 1} is a boolean function, then the influence of i for f is defined as

Infi(f) := Pr
x

[f(x) 6= f(x + ei)] (3)

where ei ∈ {0, 1}n is the vector that has a 1 in the i-th position and zeroes everywhere else. That
is, Infi(f) is the probability that, if we pick a random x, the value of f at x is different from the
value of f at the point that we get by flipping the i-th bit of f .

It is easy that see that Inf i(f) satisfies the following identities.

Infi(f) =
1

4
E
x
(f(x) − f(x + ei))

2 =
∑

S:i∈S

f̂2(S) (4)

For a general real-valued function f : {0, 1}n → R, we will define the influence of i for f as

Infi(f) :=
1

4
E
x
(f(x) − f(x + ei))

2 =
∑

S:i∈S

f̂2(S)

Note that Equation 3 is not valid if f is a general real-valued function.

We will make use of the following simple fact, that is valid for every function f : {0, 1}n → R: if
S 6= ∅ and i ∈ S, then

Infi(f) ≥ f̂2(S)

and, in particular, for every f : {0, 1}n → R,

max
i

Infi(f) ≥ max
S 6=∅

f̂2(S) (5)

For boolean functions f : {0, 1}n → {−1, 1}, the stronger inequality maxi Infi(f) ≥ maxS 6=∅ |f̂(S)|
holds, but we will not use it.

For a function f : {0, 1}n → R, a threshold d ≤ n, and an index i ∈ [n], we define the degree-d
influence of i for f as

Inf≤d
i (f) :=

∑

S:i∈S,|S|≤d

f̂2(S) .

We will make use of the following simple fact: if f is a bounded function, then not too many
variables can have large low-degree influence. Specifically:

n
∑

i=1

Inf≤d
i (f) =

n
∑

i=1

∑

S:i∈S,|S|≤d

f̂2(S) =
∑

S:i∈S,|S|≤d

|S|f̂2(S) ≤ d
∑

S

f̂2(S)

In particular, if f : {0, 1}n → [−1, 1], then
∑n

i=1 Inf≤t
i (f) ≤ d, and so at most d/ε variables can

have degree-d influence larger than ε.
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2.3 Cross-Influence

For the application to PCP, the following definition will be useful. Let F = f1, . . . , fk be a collection
of (not necessarily distinct) functions fj : {0, 1}n → R. Then the cross-influence of i for F is defined
as

XInf i(f1 . . . , fk) := max
j 6=h

min{Infi(fj), Inf i(fh)} (6)

In other words, XInf i(f1, . . . , fk) ≥ ε if and only if there are at least two functions fj, fh, with
j 6= h, such that Inf i(fj) ≥ ε and Infi(fh) ≥ ε. Conversely, XInf i(f1, . . . , fk) ≤ ε if there is at most
one function fj such that Infi(fj) > ε.

More generally, for a threshold t, we define the t-cross influence of i for F as

tXInf i(f1, . . . , fk) := max
j1,...,jt∈[k], all distinct

min{Infi(fj1), . . . , Inf i(fjt)} (7)

That is, tXInfi(F) is the smallest ε such that there are at least t functions fj1 , . . . , fjt in F such
that coordinate i has influence at least ε for all of them. Note that XInf(F) = 2XInf(F).

If all the functions fj are equal to the same function f , then kXInf i(f1, . . . , fk) = XInfi(f1, . . . , fk) =
Infi(f).

Similarly, we define the degree-d cross-influence of F as

XInf≤d
i (f1 . . . , fk) := max

j 6=h
min{Inf≤d

i (fj), Inf≤d
i (fh)} (8)

2.4 Gowers Uniformity

Definition 1 (Gowers Uniformity) Let f : {0, 1}n → R be a function, and d ≥ 1 be an integer.
The dimension-d uniformity of f is defined as

Ud(f) := E
x,x1,...,xd

∏

S⊆[d]

f

(

x +
∑

i∈S

xi

)

Remark 1 Here we use a terminology and notation that is a hybrid between the one of Gowers
[Gow98, Gow01] and the one of Green and Tao [GT04, GT05]. What we call dimension-d unifor-
mity is called degree-(d − 1) uniformity by Gowers, and no notation is introduced for it. Gowers

also introduces the notation ||f ||d, which equals, in our notation,
(

Ud(f)
)1/2d

. Gowers proves that
|| · ||d is a norm, and he does not give it a name. Green and Tao use the notation ||f ||Ud for
(

Ud(f)
)1/2d

, and call it the (dimension-d) Gowers norm.

Here are expressions for the first few values of d:
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U1(f) = E
x,y

f(x)f(x + y) =

(

E
x

f(x)

)2

U2(f) = E
x,y,z

f(x)f(x + y)f(x + z)f(x + y + z)

= E
y

(

E
x

f(x)f(x + y)

)2

U3(f) = E
x,y,z,w

f(x)f(x + y)f(x + z)f(x + y + z)f(x + w)f(x + y + w)f(x + z + w)f(x + y + z + w)

= E
y,z

(

E
x

f(x)f(x + y)f(x + z)f(x + y + z)

)2

The above examples suggest the use of the following notation.

For a function f : {0, 1}n → R and elements x1, . . . , xd ∈ {0, 1}n, define

fx1,...,xd
(x) :=

∏

S⊆[d]

f

(

x +
∑

i∈S

xi

)

Then we have

Ud(f) = E
x,x1,...,xd

fx1,...,xd
(x) = E

x1,...,xd−1

(

E
x

fx1,...,xd−1
(x)

)2

Define the dimension-d Gowers inner product of a collection {fS}S⊆[d] of (not necessarily different)
functions fS : {0, 1}n → R, as

〈|{fS}〉Ud := E
x,x1,...,xd





∏

S⊆[d]

fS

(

x +
∑

i∈S

xi

)



 (9)

Note that, in particular, if all the functions fS are equal to the same function f then 〈{fS}〉Ud =
Ud(f).

2.5 Unique Games

A unique game [Kho02] is a constraint satisfaction problem such that every constraint is of the
form y = fx,y(x), where x, y are variables ranging over a finite set Σ, which we call the alphabet,
specified as part of the input, and fx,y : Σ → Σ is a permutation. Given a unique game, we are
interested in finding the assignment of values to the variables that satisfies the largest number of
constraints.

More formally, a unique game is a tuple (V,E,Σ, {fx,y}(x,y)∈E) where V is a set of variables, E is
a set of pairs of variables (corresponding to constraints), and, for every (x, y) ∈ E, the function
fx,y : Σ → Σ is a permutation. Note that (V,E) is a graph, which we call the constraint graph
of the unique game. We want to find an assignment A : V → Σ that maximizes the number of
satisfied constraints, that is, the number of pairs (x, y) ∈ E such that A(y) = fx,y(A(x)). The value

12



of an assignment is the fraction of constraints satisfied by the assignment; the value of a unique
game is the value of an optimum assignment.

For example, the following is a unique game with V = {v1, v2, v3, v4} and Σ = {a, b, c}:

v3 =

(

a b c

c b a

)

(v1)

v3 =

(

a b c

a c b

)

(v2)

v1 = v2

v4 =

(

a b c

b c a

)

(v2)

Where we use the notation

(

a b c
f(a) f(b) f(c)

)

to represent a function f : {a, b, c} → {a, b, c}.
The reader can verify that the value of the above unique game is 3/4.

The unique games conjecture is that for every γ > 0 there is a σ = σ(γ) such that it is NP-hard to
distinguish unique games of value ≥ 1 − γ from unique games of value ≤ γ, even when restricted
to instances where |Σ| ≤ σ and where the constraint graph is bipartite.

For our application, we will need a variant of unique games, that we call d-ary unique game.
In a d-ary unique game, a constraint is specified by a d-tuple v1 . . . , vd of variables and a d-
tuple of permutations f1, . . . , fd : Σ → Σ. An assignment A : V → Σ strongly satisfies the
constraint if f1(A(v1)), . . . , fd(A(vd)) are all equal; an assignment weakly satifies the constraint it
if f1(A(v1)), . . . , fd(A(vd)) are not all different.

The following result is a rephrasing of a result by Khot and Regev [KR03].

Theorem 2 If the unique games conjecture is true, then for every d and every γ there is a σ =
σ(d, γ) such that, given a d-ary unique game with alphabet size σ, it is NP-hard to distinguish the
case in which there is an assignment that strongly satisfies at least a 1 − γ fraction of constraints
from the case where every assignment weakly satisfies at most a γ fraction of constraints.

We define the strong value of an assignment to a d-ary unique game as the fraction of constraints
that are strongly satisfied by the assignment. The strong value of a unique game is the largest
strong value among all assignments. The weak value of an assignment and of a unique game are
similarly defined. Note that the weak value is always at least as large as the strong value.

3 Influence of Product of Functions

In this section we prove a bound on the influence of a function of the form f(x) := f1(x) ·
f2(x) · · · fk(x) in terms of the influence of the functions fj. Such a bound will be very useful
in the proofs of our main results.

In the boolean case, the bound is just a simple union bound.
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Lemma 3 Let f1, . . . , fk : {0, 1}n → {−1, 1} be boolean functions, and define f(x) = f1(x) ·
f2(x) · · · fk(x).

Then, for every i ∈ [n]

Inf i(f) ≤
∑

j

Inf i(fj) (10)

Proof: Using the formula for the influence of boolean functions, we see that

Inf i(f) = Pr
x

[f(x) 6= f(x + ei)]

= Pr
x

[f1(x) · · · fk(x) 6= f1(x + ei) · · · fk(x + ei)]

≤
k
∑

j=1

Pr
x

[fj(x) 6= fj(x + ei)]

=
∑

j

Infi(fj)

�

For general real-valued functions, we cannot hope to achieve the nice bound of Equation 10. Sup-
pose, for example, that n = 1 and that all functions fj are defined as follows: fj(0) = 1 − ε,
fj(1) = 1.

Then, we have I1(fj) = 1
4ε2. When we define f(x) :=

∏

j fj(x), we get f(0) = (1−ε)k and f(1) = 1,

and so Ii(f) = 1
4(1 − (1 − ε)k)2, which is about 1

4k2ε2 for small ε, or about k times the sum of the
influences of the functions fj. The following Lemma achieves such a tight bound.

Lemma 4 Let fi : {0, 1}n → [−1, 1] be k functions, and define

f(x) := f1(x) · · · fk(x)

Then, for every i ∈ [n], Inf i(f) ≤ k ·∑j Inf i(fj)

Proof: We begin by proving the following claim:

∀a1, . . . , ak, b1, . . . , bk ∈ [−1, 1].

∣

∣

∣

∣

∣

∏

i

ai −
∏

i

bi

∣

∣

∣

∣

∣

≤
∑

i

|ai − bi| (11)

We prove Inequality 11 by first expressing the right-hand side as a telescoping sum of a sequence
of “hybrids,” and then by using the triangle inequality and the fact that all ai and bi have absolute
value at most 1.

|a1 · a2 · · · ak − b1 · b2 · · · bk|
= |(a1 · a2 · · · ak) − (b1 · a2 · · · ak) + (b1 · a2 · · · ak) − (b1 · b2 · a3 · · · ak) + (b1 · b2 · a3 · · · ak) −

· · · + (b1 · · · bk−1 · ak) − (b1 · · · bk)|
= |(a2 · · · ak) · (a1 − b1) + (b1 · a3 · · · ak) · (a2 − b2) + · · · + (b1 · · · bk−1) · (ak − bk)|
≤ |a2 · · · ak| · |a1 − b1| + |b1 · a3 · · · ak| · |a2 − b2| + · · · + |b1 · · · bk−1| · |ak − bk|
≤ |a1 − b1| + |a2 − b2| + · · · + |ak − bk|
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If we square both sides and apply Cauchy-Schwartz, we get

(

∏

i

ai −
∏

i

bi

)2

≤
(

∑

i

|ai − bi|
)2

≤ k ·
∑

i

(ai − bi)
2

To summarize our progress so far, we have proved the following claim:

∀a1, . . . , ak, b1, . . . , bk ∈ [−1, 1].

(

∏

i

ai −
∏

i

bi

)2

≤ k ·
∑

i

(ai − bi)
2 (12)

We are now ready to prove the Lemma. For every x, using Inequality 12, we have

(f(x) − f(x + ei))
2 =

(

∏

i

fi(x) −
∏

i

fi(x + ei)

)2

≤ k ·
∑

j

(fj(x) − fj(x + ei))
2

and of course the same inequality remains valid if we take the average over x, so we have

Infi(f) =
1

4
E
x
(f(x) − f(x + ei))

2 ≤ k
1

4
E
x

∑

j

(fj(x) − fj(x + ei))
2 ≤ k

∑

j

Inf i(fj)

�

4 Low Influence Implies Small Gowers Uniformity

We are going to show that, for balanced functions f : {0, 1}n → {−1, 1}, if U d(f) is large, then one
of the variables of f has high influence.

Lemma 5 Let f : {0, 1}n → {−1, 1} be a function and d ≥ 1 be an integer. Then

Ud(f) ≤ U1(f) + (2d−1 − 1)max
i

Infi(f)

Proof:The case d = 1 is trivial. Let d ≥ 2, and define I := maxi Infi(f). We will prove

Ud(f) ≤ Ud−1(f) + 2d−2I (13)

which immediately implies the statement of the lemma.

We write

Ud(f) = E
x1,...,xd−2

[

E
x,y,z

fx1,...,xd−2
(x)fx1,...,xd−2

(x + y)fx1,...,xd−2
(x + z)fx1,...,xd−2

(x + y + z)

]

= E
x1,...,xd−2

∑

α

f̂4
x1,...,xd−2

(α)
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= E
x1,...,xd−2

∑

α6=∅
f̂4

x1,...,xd−2
(α) + E

x1,...,xd−2

f̂4
x1,...,xd−2

(∅)

We separately bound the two terms in the last expression.

For every a1, . . . , ad−2 ∈ {0, 1}n, using Lemma 3, we get that, for every i ∈ α, Inf i(fa1,...,ad−2
) ≤

2d−2Infi(f) ≤ 2d−2I and so we have that, for every a1, . . . , ad−2 ∈ {0, 1}n,

∑

α6=∅
f̂4

a1,...,ad−2
(α) ≤ max

α6=∅
f̂2

a1,...,ad−2
(α) ≤ max

i
Infi(fa1,...,ad−2

) ≤ 2d−2I

and so

E
x1,...,xd−2

∑

α6=∅
f̂4

x1,...,xd−2
(α) ≤ 2d−2I

Regarding the other term,

E
x1,...,xd−2

f̂4
x1,...,xd−2

(∅) ≤ E
x1,...,xd−2

f̂2
x1,...,xd−2

(∅) = E
x1,...,xd−2

(

E
x

fx1,...,xd−2
(x)

)2

= Ud−1(f)

�

The same argument also applies to general bounded real-valued functions.

Lemma 6 Let f : {0, 1}n → [−1, 1] be a function and d ≥ 1 be an integer. Then

Ud(f) ≤ U1(f) + 4d max
i

Infi(f)

Proof: Define I := maxi Inf i(f). It suffices to prove that, for d ≥ 2,

Ud(f) ≤ Ud−1(f) + 22d−4 max
i

Inf i(f) (14)

We repeat the proof of Lemma 5 verbatim, except that we use Lemma 4 instead of Lemma 3 to
get an upper bound for Inf i(fa1,...,ad−2

). Because of the worse bound in Lemma 4, we only get the
bound

Infi(fa1,...,ad−2
) ≤ 22d−4Infi(f) ≤ 22d−4I

and the rest of the proof proceeds with no change, except for the term 22d−4 instead of 2d−2. �

We remark that our bound for the boolean case is nearly tight.

Lemma 7 For every fixed d ≥ 2 and large n, there is a function f : {0, 1}n → {−1, 1} such that
U1(f) = on(1), Ud(f) = 1 and maxi Infi(f) ≤ 1

2d−2 + on(1).

Proof: Consider the function

f(x1, . . . , xn) := (−1)x1x2···xd−1+xd···x2d−2+···

�
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5 Low Cross-Influence Implies Small Gowers Inner Product

The main result of this section is that if a collection of functions has small cross-influence, then it
has small Gowers inner product, provided that at least one of the functions is balanced.

Lemma 8 For d ≥ 2, let {fS}S⊆[d] be a collection of functions fS : {0, 1}n → [−1, 1] such that

• f[d] is balanced, that is, Ex f[d](x) = 0;

• 4XInf i({fS}) ≤ ε for every i.

Then
〈{fS}〉Ud ≤ √

ε · 2O(d)

Before proving Lemma 8, we establish a variant of a result of Aumann et al. [AHRS01] which will
be useful in the inductive step of the proof of Lemma 8.

Lemma 9 For every four bounded functions f1, f2, f3, f4 : {0, 1}n → [−1, 1],

∣

∣

∣

∣

∣

∑

α

f̂1(α)f̂2(α)f̂3(α)f̂4(α)

∣

∣

∣

∣

∣

≤ 4max
α

min{|f̂1(α)|, |f̂2(α)|, |f̂3(α)|, |f̂4(α)|}

Proof: Let
ε := max

α
min{|f̂1(α)|, |f̂2(α)|, |f̂3(α)|, |f̂4(α)|}

For i = 1, . . . , 4, let Si be the family of all sets α such that |f̂i(α)| ≤ ε. By definition, the union of
the families Si contains all subsets α ⊆ [n]. We can then write

∣

∣

∣

∣

∣

∑

α

f̂1(α)f̂2(α)f̂3(α)f̂4(α)

∣

∣

∣

∣

∣

≤
∑

α

|f̂1(α)| · |f̂2(α)| · |f̂3(α)| · |f̂4(α)|

≤
4
∑

i=1

∑

α∈Si

|f̂1(α)| · |f̂2(α)| · |f̂3(α)| · |f̂4(α)|

< ε





∑

α∈S1

|f̂2(α)| · |f̂3(α)| · |f̂4(α)| +
∑

α∈S2

|f̂1(α)| · |f̂3(α)| · |f̂4(α)|

+
∑

α∈S3

|f̂1(α)| · |f̂2(α)| · |f̂4(α)| +
∑

α∈S4

|f̂1(α)| · |f̂2(α)| · |f̂3(α)|





≤ 4ε
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The last inequality follows from the fact that for every three functions f, g, h : {0, 1}n → [−1, 1] we
have

∑

α

|f̂(α)||ĝ(α)||ĥ(α)| ≤
∑

α

|f̂(α)||ĝ(α)| ≤
√

∑

α

f̂2(α)

√

∑

α

ĝ2(α) ≤ 1

�

We proceed with the proof of our main result of this section.

Proof:[Of Lemma 8] We want to prove

〈{fS}〉Ud ≤ τ(ε, d) (15)

for a function τ(ε, d) =
√

ε · 2O(d) that we specify later.

We proceed by induction on d.

The case d = 1

For d = 1, we have two functions f∅, f{1} such that Ex f{1}(x) = 0 and we want an upper bound to
〈{fS}〉U1 . We see that

〈f∅, f{1}〉U1 =

(

E
x

f∅(x)

)

·
(

E
y

f{1}(y)

)

= 0

We have proved the base case of Equation 15 with τ(ε, 1) = 0.

The inductive step

Suppose now that, for d ≥ 1, the lemma is true up to dimension d, and we want to prove it for
dimension d + 1.

We have 2d+1 functions {fS}S⊆[d+1] and we want to upper bound the Gowers inner product

〈{fS}〉Ud+1 = E
x,x1,...,xd+1

∏

S⊆[d+1]

fS

(

x +
∑

i∈S

xi

)

(16)

For every x1, . . . , xd−1, define the four functions4

Ax1,...,xd−1
(x) :=

∏

S⊆[d−1]

fS

(

x +
∑

i∈S

xi

)

Bx1,...,xd−1
(x) :=

∏

S⊆[d−1]

fS∪{d}

(

x +
∑

i∈S

xi

)

4The case d = 1 is somewhat degenerate: [d − 1] is the empty set, and x1, . . . , xd−1 is an empty sequence. So we
simply have A := f∅, B := f{1}, C := f{2} and D := f{1,2}, with no subscripts.
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Cx1,...,xd−1
(x) :=

∏

S⊆[d−1]

fS∪{d+1}

(

x +
∑

i∈S

xi

)

Dx1,...,xd−1
(x) :=

∏

S⊆[d−1]

fS∪{d,d+1}

(

x +
∑

i∈S

xi

)

with this notation, we can rewrite the expression (16) as

〈{fS}〉Ud+1 = E
x,x1,...,xd+1

Ax1,...,xd−1
(x)Bx1,...,xd−1

(x+xd)Cx1,...,xd−1
(x+xd+1)Dx1,...,xd−1

(x+xd+xd+1)

and using the Fourier expansion and simplifying,

〈{fS}〉Ud+1 = E
x1,...,xd−1

∑

α

Âx1,...,xd−1
(α)B̂x1 ,...,xd−1

(α)Ĉx1 ,...,xd−1
(α)D̂x1 ,...,xd−1

(α)

= E
x1,...,xd−1

∑

α6=∅
Âx1,...,xd−1

(α)B̂x1 ,...,xd−1
(α)Ĉx1 ,...,xd−1

(α)D̂x1 ,...,xd−1
(α)

+ E
x1,...,xd−1

Âx1,...,xd−1
(∅)B̂x1,...,xd−1

(∅)Ĉx1,...,xd−1
(∅)D̂x1 ,...,xd−1

(∅)

We bound the two terms separately.

For the first term, we have that, for every fixed x = (x1, . . . , xd−1),

∑

α6=∅
Âx(α)B̂x(α)Ĉx(α)D̂x(α)

≤ 4max
α6=∅

min{|Âx(α)|, |B̂x(α)|, |Ĉx(α)|, |D̂x(α)|}

≤ 4
√

max
i

min{Inf i(Ax), Inf i(Bx), Inf i(Cx), Inf i(Dx)}

And we observe that

min{Inf i(Ax), Inf i(Bx), Inf i(Cx), Inf i(Dx)} ≤ 22d−2ε (17)

by using Lemma 4. To verify this claim,5 let δ be the minimum in the above expression. Then
Infi(Ax) ≥ δ; recall Ax is defined as a product of 2d−1 functions of the form fS(x +

∑

S xi),
S ⊆ [d − 1], where we think of the xi as constants, and so for at least one S ⊆ [d − 1] we have
Infi(fS) ≥ δ/22d−2. We argue similarly for Bx, Cx and Dx, and we find three more functions for

5Again, the d = 1 case is degenerate but easy to check: Equation 17 reduces to

min{Infi(f∅), Infi(f{1}), Infi(f{2}), Infi(f{1,2})} ≤ ε

which is precisely our assumption that the 4-cross influence of the functions is at most ε.
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which coordinate i has influence at most δ/22d−2, and these four functions are distinct. Therefore,
ε ≥ 4XInfi({fS}) ≥ δ/22d−2.

So we have that, for every fixed x = (x1, . . . , xd−1)

∑

α6=∅
Âx(α)B̂x(α)Ĉx(α)D̂x(α) ≤ 4

√
22d−2ε

and so, in particular

E
x

∑

α6=∅
Âx(α)B̂x(α)Ĉx(α)D̂x(α) ≤ 4

√
22d−2ε

The second term can be written as

E
x

Âx(∅)B̂x(∅)Ĉx(∅)D̂x(∅)

= E
x,x,y,z,w

Ax(x)Bx(x + y)Cx(x + z)Dx(x + w) (18)

≤ E
x,x,w

Ax(x)Bx(x + a)Cx(x + b)Dx(x + w) (19)

where a, b are values for y, z that maximize the expectation in Equation 18.

If we expand the Expression in (19), we get

Ex,x1,...,xd−1,w
∏

S⊆[d−1] fS

(

x +
∑

i∈S xi

)

fS∪{d}
(

x + a +
∑

i∈S xi

)

fS∪{d+1}
(

x + b +
∑

i∈S xi

)

fS∪{d,d+1}
(

x + w +
∑

i∈S xi

) (20)

which we are going to re-write as the d-dimensional Gowers inner product of a new set of functions,
so that we can invoke the inductive hypothesis. For every S ⊆ [d − 1], define

gS(x) := fS(x) · fS∪{d}(x + a) · fS∪{d+1}(x + b)

and define
gS∪{d}(x) := fS∪{d,d+1}(x)

Expression (20) becomes

E
x,x1,...,xd−1,w

∏

S⊆[d−1]

gS

(

x +
∑

∈S

xi

)

· gS∪{d}

(

x +
∑

i∈S

xi + w

)

= E
x,x1,...,xd−1,xd

∏

S⊆[d]

gS

(

x +
∑

∈S

xi

)

= 〈{gS}〉Ud

after the change of variable w → xd.

By definition, the function g[d] = f[d+1] is balanced, and, by construction and by Lemma 4, the

4-cross-influence of the functions gS is at most 9ε. So we have U d({gS}) ≤ τ (9ε, d).
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We have thus solved the case of dimension d + 1, with

τ(ε, d + 1) = 2d+1 · √ε + τ (9ε, d)

Together with the base case
τ(ε, 1) = 0

the recursion gives τ(ε, d) = 2O(d) · √ε. �

6 Generalizing to Complex-Valued Functions on Arbitrary

Groups

In this section we generalize our result to the setting of functions f : G1 × · · · × Gn → C where
each Gi is a finite abelian group.

We fix a group G = G1 × · · · × Gn for the rest of this section.

We write group operations in G and in the groups Gi additively. We will recover the results of the
previous sections when each Gi is Z2. We denote an element of G as a tuple g = (g1, . . . , gn) where
gi is an element of Gi. The zero element of G is the tuple 0 = (0, . . . , 0).

If z = a + bi is a complex number, we define its conjugate z := a − bi and its absolute value
|z| :=

√
a2 + b2 =

√
z · z.

6.1 Complex Random Variables

If X is a random variable that takes on finitely many complex values, and µ(x) is the probability
that X takes value x, then the average of X is the complex number

E[X] :=
∑

x

µ(x) · x

and the variance of X is the real number

Var[X] := E[|X − E[X]|2] .

6.2 Fourier Analysis

A function χ : G0 → C is a character of a group G0 if χ(0) = 1 and χ(a + b) = χ(a)χ(b) for every
a, b ∈ G0. We also have χ(−a) = χ(a).

It is well known that a finite abelian group G0 has precisely |G0| characters, and that there is an
isomorphism between G0 and the set of characters that associates to each group element g precisely
one character χg so that χ0 is the constant 1 function and χgχh = χg+h.

For each group Gi, let {χi
g}g∈Gi be the characters of Gi, indexed according to the above isomor-

phism.

For each g = (g1, . . . , gn) define the function χg1,...,gn : G → C
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χg1,...,gn(x1, . . . , xn) :=
∏

i∈[n]

χi
gi

(xi) .

Then the functions χg are the characters of the group G.

Define the following inner product among functions f, h : G → C:

〈f, h〉 := E
x

f(x)h(x)

Then one can verify that the functions χg are orthonormal with respect to the inner product, and
form a basis for the space of functions f : G → C. Every such function can be written as

f(x) =
∑

g∈G

f̂(g)χg(x)

where f̂(g) = 〈f, χg〉.
We again have Placherel’s identity

E
x
|f(x)|2 =

∑

g

|f̂(g)|2

and we observe that

f̂(0) = E
x

f(x)

6.3 Influence of Variables

The following definitions could be given in a much more general setting, but the following will
suffice for the purpose of this paper.

Let Σ1, . . . ,Σn be finite and f : Σ1 × · · · × Σn → C be a function, then the influence of i for f is
defined as

Inf i(f) := E
x1,...,xi−1,xx+1,...,xn

[

Var
xi

[f(x1, . . . , xn)]

]

where the variables xi are mutually independent, and each xi is uniformly distributed over Σi. The
reader should verify that if each Σi = {0, 1} and if f takes only real values, then we recover the
definition we gave earlier. Note that the influence is always a non-negative real number.

Returning to our setting of functions f : G1 × · · · × Gn → C, we have the following fact:

Infi(f) =
∑

(g1,...,gn):gi 6=0

|f̂(g1, . . . , gn)|2

and, in particular,
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max
i

Inf i(f) ≥ max
g 6=0

|f̂(g)|2

6.4 Influence of Products of Functions

The following result is the only real difficulty in generalizing our results from previous sections.
(The rest just follows the same proofs with some changes in notation.)

Lemma 10 Let f, g : Σ1 ×· · ·×Σn → C be functions such that |f(x)| ≤ 1 and |g(x)| ≤ 1 for every
x.

Then, for every i ∈ [n],
Inf i(fg) ≤ 3 · (Infi(f) + Infi(g))

To prove the lemma, it is enough to prove the following bound

Lemma 11 Let f, g : Σ → C be functions such that |f(x)| ≤ 1 and |g(x)| ≤ 1 for every x.

Then,
Var

x
[f(x)g(x)] ≤ 3 · (Var

x
[f(x)] + Var

x
[g(x)])

Proof: Recall that Varx[f(x)g(x)] := Ex |f(x)g(x) − Ey[f(y)g(y)]|2. For every x,

∣

∣

∣

∣

f(x)g(x) − E
y
[f(y)g(y)]

∣

∣

∣

∣

=

∣

∣

∣

∣

f(x)g(x) − E
y
[f(y)]g(x) + E

y
[f(y)]g(x) − E

y
[f(y)g(y)]

∣

∣

∣

∣

=

∣

∣

∣

∣

g(x) ·
(

f(x) − E
y
[f(y)]

)

+ E
y

[f(y) · (g(x) − g(y))]

∣

∣

∣

∣

≤ |g(x)| ·
∣

∣

∣

∣

f(x) − E
y
[f(y)]

∣

∣

∣

∣

+ E
y

[|f(y)||g(x) − g(y)|]

≤
∣

∣

∣

∣

f(x) − E
y
[f(y)]

∣

∣

∣

∣

+ E
y

[|f(y)| |g(x) − g(y)|]

We can now compute the variance of fg:

Var
x

[f(x)g(x)] := E
x

∣

∣

∣

∣

f(x)g(x) − E
y
[f(y)g(y)]

∣

∣

∣

∣

2

≤ E
x

∣

∣

∣

∣

∣

∣

∣

∣

f(x) − E
y
[f(y)]

∣

∣

∣

∣

+ E
y

[|f(y)| |g(x) − g(y)|]
∣

∣

∣

∣

2

≤ 2 E
x

[

∣

∣

∣

∣

f(x) − E
y
[f(y)]

∣

∣

∣

∣

2

+

∣

∣

∣

∣

E
y

[|f(y)| |g(x) − g(y)|]
∣

∣

∣

∣

2
]

= 2 E
x

∣

∣

∣

∣

f(x) − E
y
[f(y)]

∣

∣

∣

∣

2

+ 2 E
x

E
y

[

|f(y)|2|g(x) − g(y)|2
]

≤ 2Var
x

[f(x)] + 4Var
x

[g(x)]
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Where the last step follows from the fact that

E
x,y

|g(x)−g(y)|2 = E
x,y

∣

∣

∣

∣

g(x) − E
z
[g(z)] + E

z
[g(z)] − g(y)

∣

∣

∣

∣

2

≤ 2 E
x

∣

∣

∣

∣

g(x) − E
z
[g(z)]

∣

∣

∣

∣

2

+2 E
y

∣

∣

∣

∣

E
z
[g(z)] − g(y)

∣

∣

∣

∣

2

Similarly, we could prove

Var
x

[f(x)g(x)] ≤ 4Var
x

[f(x)] + 2Var
x

[g(x)]

And the average of the two bonds gives us the desired result. �

A simple induction shows that

Infi(f1 · · · fk) ≤ 3 · klog2 3 ·
∑

j

Infi(fj)

6.5 Gowers Uniformity

The definition of U d for complex-valued functions is as follows: for d ≥ 1 and f : G → C,

Ud(f) := E
x,x1,...,xd





∏

S⊆[d],|S| even

f

(

x +
∑

i∈S

xi

)



 ·





∏

S⊆[d],|S| odd

f

(

x +
∑

i∈S

xi

)





The inductive definition of U d is perhaps simpler. For a function f : G → C and elements
x1, . . . , xd ∈ G, define fx1,...,xd

: G → C inductively as follows:

fx1,...,xd
(x) := fx1,...,xd−1

(x)fx1,...,xd−1
(x + xd)

and then define

Ud(f) := E
x,x1,...,xd

fx1,...,xd
(x)

It is possible to show that U d(f) is always a non-negative real number, because we have

Ud(f) = E
x,x1,...,xd

fx1,...,xd−1
(x)fx1,...,xd−1

(x + xd)

= E
x1,...,xd−1

(

E
x

fx1,...,xd−1
(x)

)(

E
x

fx1,...,xd−1
(x)

)

= E
x1,...,xd−1

∣

∣

∣

∣

E
x

fx1,...,xd−1
(x)

∣

∣

∣

∣

2

Explicit formulas for the case d = 1, 2 are:
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U1(f) = E
x,y

f(x)f(x + y) = (E
x

f(x)) · E
x

f(x)) = |E
x

f(x)|2

and

U2(f) = E
x,y,z

f(x)f(x + y)f(x + z)f(x + y + z) =
∑

g

f̂(g)f̂ (g)f̂(g)f̂(g) =
∑

g

|f̂(g)|4

6.6 Gowers Uniformity and Influence

Theorem 12 Let f : G1 × · · · ×Gn → C be a function such that |f(x)| ≤ 1 for every x. Then, for
every d ≥ 1,

Ud(f) ≤ U1(f) + 2O(d) max
i

Infi(f)

Proof: The case d = 1 is trivial. For d ≥ 2, it suffices to prove

Ud(f) ≤ Ud−1(f) + 2cd max
i

Infi(f)

for an absolute constant c. Let I := maxi Infi(f).

We follow the proof of Lemma 5 and write

Ud(f) = E
x1,...,xd−2

[

E
x,y,z

fx1,...,xd−2
(x)fx1,...,xd−2

(x + y)fx1,...,xd−2
(x + z)fx1,...,xd−2

(x + y + z)

]

= E
x1,...,xd−2

∑

g

|f̂x1,...,xd−2
(g)|4

= E
x1,...,xd−2

∑

g 6=0

|f̂x1,...,xd−2
(g)|4 + E

x1,...,xd−2

|f̂x1,...,xd−2
(0)|4

We separately bound the two terms in the last expression.

For every a1, . . . , ad−2 ∈ G, and every g = (g1, . . . , gn) 6= 0, using Lemma 10, we get that, for every
i : gi 6= 0, Inf i(fa1,...,ad−2

) ≤ 2cdInfi(f) ≤ 2cdI for an absolute constant c, and so we have that, for
every a1, . . . , ad−2 ∈ G,

∑

g 6=0

|f̂a1,...,ad−2
(g)|4 ≤ max

g
|f̂a1,...,ad−2

(g)|2 ≤ max
i

Infi(fa1,...,ad−2
) ≤ 2cdI

and so

E
x1,...,xd−2

∑

g 6=0

|f̂x1,...,xd−2
(g)|4 ≤ 2cdI

Regarding the other term,

E
x1,...,xd−2

|f̂x1,...,xd−2
(0)|4 ≤ E

x1,...,xd−2

|f̂x1,...,xd−2
(0)|2 = E

x1,...,xd−2

∣

∣

∣

∣

E
x

fx1,...,xd−2
(x)

∣

∣

∣

∣

2

= Ud−1(f)

�
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6.7 Gowers Inner Product

Let {fS}S⊆[d] be a collection of functions fS : G → C. Then their Gowers inner product is the
complex number

〈{fS}〉Ud := E
x,x1,...,xd





∏

S⊆[d]:|S| even

fS

(

x +
∑

i∈S

xi

)

·
∏

S⊆[d]:|S| odd

fS

(

x +
∑

i∈S

xi

)



 (21)

6.8 Gowers Inner Product and Cross-Influence

We generalize Lemma 8 to the case of products of arbitrary groups.

Lemma 13 For d ≥ 1, let {fS}S⊆[d] be a collection of functions fS : G1 × · · · ×Gn → C such that

• |fS(x)| ≤ 1 for every S and every x;

• f[d] is balanced, that is, Ex f[d](x) = 0;

• 4XInf i({fS}) ≤ ε for every i.

Then
|〈{fS}〉Ud | ≤

√
ε · 2O(d)

We give an outline of the changes needed to adapt the proof of Lemma 8.

First, we need the following bound, whose proof is identical to the proof of Lemma 9.

Lemma 14 Let f1, f2, f3, f4 : G → C be functions such that |fi(x)| ≤ 1 for every i and every x.
Then

∑

g

|f̂1(g)| · |f̂2(g)| · |f̂3(g)| · |f̂4(g)| ≤ 4max
g

min{|f̂1(g)|, |f̂2(g)|, |f̂3(g)|, |f̂4(g)|}

As in the proof Lemma 8, we proceed by induction on d and prove that, under the hypothesis of
the lemma, 〈{fS}〉Ud | ≤ τ(ε, d) for a function τ that satisfies τ(ε, d) =

√
ε2O(d). For d = 1, We

have 〈f∅, f{1}〉U1 = (Ex f∅(x)) ·
(

Ey f{1}(y)
)

= 0, and so we have the base case with τ(ε, 1) = 0.

For the inductive step, we consider the (d + 1)-dimensional Gower inner product

〈{fS}〉Ud+1 = E
x,x1,...,xd+1





∏

S⊆[d+1]:|S| even

fS

(

x +
∑

i∈S

xi

)

·
∏

S⊆[d+1]:|S| odd

fS

(

x +
∑

i∈S

xi

)



 (22)

It is easier to rewrite it as

〈{fS}〉Ud+1 = E
x,x1,...,xd+1





∏

S⊆[d+1]:|S|
FS

(

x +
∑

i∈S

xi

)



 (23)

26



where we define FS := fS if |S| is even and FS := fS if |S| is odd.

For every x1, . . . , xd−1, define the four functions

Ax1,...,xd−1
(x) :=

∏

S⊆[d−1]

FS

(

x +
∑

i∈S

xi

)

Bx1,...,xd−1
(x) :=

∏

S⊆[d−1]

FS∪{d}

(

x +
∑

i∈S

xi

)

Cx1,...,xd−1
(x) :=

∏

S⊆[d−1]

FS∪{d+1}

(

x +
∑

i∈S

xi

)

Dx1,...,xd−1
(x) :=

∏

S⊆[d−1]

FS∪{d,d+1}

(

x +
∑

i∈S

xi

)

with this notation, we can rewrite the expression (23) as

〈{fS}〉Ud+1 = E
x,x1,...,xd+1

Ax1,...,xd−1
(x)Bx1,...,xd−1

(x + xd)Cx1,...,xd−1
(x + xd+1)Dx1,...,xd−1

(x+xd+xd+1)

and using the Fourier expansion and simplifying,

|〈{fS}〉Ud+1 | =

∣

∣

∣

∣

∣

E
x=(x1,...,xd−1)

∑

g

Âx(g)B̂x(g)Ĉx(g)D̂x(g)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

E
x=(x1,...,xd−1)

∑

g 6=(0,...,0)

Âx(α)B̂x(g)Ĉx(g)D̂x(g)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

E
x=(x1,...,xd−1)

Âx(0, . . . , 0)B̂x(0, . . . , 0)Ĉx(0, . . . , 0)D̂x(0, . . . , 0)

∣

∣

∣

∣

∣

We bound the two terms separately.

For the first term, we have that, for every fixed x = (x1, . . . , xd−1),

∣

∣

∣

∣

∣

∣

∑

g 6=(0,...,0)

Âx(g)B̂x(g)Ĉx(g)D̂x(g)

∣

∣

∣

∣

∣

∣

≤
∑

g 6=(0,...,0)

|Âx(g)| · |B̂x(g)| · |Ĉx(g)| · |D̂x(g)|

=
∑

g 6=(0,...,0)

|Âx(g)| · |B̂x(g)| · |Ĉx(g)| · |D̂x(g)|

≤ 4
√

max
i

min{Inf i(Ax), Inf i(Bx), Inf i(Cx), Inf i(Dx)}

27



And we observe that, for every x = (x1, . . . , xd−1) and every i,

min{Infi(Ax), Inf i(Bx), Inf i(Cx), Inf i(Dx)} ≤ 2cdε

for some absolute constant c.

The second term can be written as

∣

∣

∣

∣

E
x

Âx(0, . . . , 0)B̂x(0, . . . , 0)Ĉx(0, . . . , 0)D̂x(0, . . . , 0)

∣

∣

∣

∣

=

∣

∣

∣

∣

E
x,x,y,z,w

Ax(x)Bx(x + y)Cx(x + z)Dx(x + w)

∣

∣

∣

∣

(24)

≤ E
y,z

∣

∣

∣

∣

E
x,x,w

Ax(x)Bx(x + y)Cx(x + z)Dx(x + w)

∣

∣

∣

∣

≤
∣

∣

∣

∣

E
x,x,w

Ax(x)Bx(x + a)Cx(x + b)Dx(x + w)

∣

∣

∣

∣

(25)

where a, b are values for y, z that maximize the expectation in Equation 24.

If we expand the Expression in (25), we get

Ex,x1,...,xd−1,w
∏

S⊆[d−1] FS

(

x +
∑

i∈S xi

)

FS∪{d}
(

x + a +
∑

i∈S xi

)

FS∪{d+1}
(

x + b +
∑

i∈S xi

)

FS∪{d,d+1}
(

x + w +
∑

i∈S xi

) (26)

which we are going to re-write as the d-dimensional Gowers inner product of a new set of functions,
so that we can invoke the inductive hypothesis. For every S ⊆ [d − 1], if S is even, define

gS(x) := FS(x) · FS∪{d}(x + a) · FS∪{d+1}(x + b)

and define
gS∪{d}(x) := FS∪{d,d+1}(x)

If S is odd, define
gS(x) := FS(x) · FS∪{d}(x + a) · FS∪{d+1}(x + b)

and
gS∪{d}(x) := FS∪{d,d+1}(x)

Expression (26) becomes 〈{gS}〉Ud after the change of variable w → xd.

By definition, the function g[d] is either f[d+1] of f[d+1] and, in either case, g[d] is balanced. By
construction and by Lemma 10, the cross-influence of the functions gS is at most c′ε for an absolute
constant c′.

This proves the inductive step with τ(ε, d + 1) = 4 ·
√

2cdε + τ(c′ε, d − 1) where c, c′ are absolute
constants. Together with τ(ε, 1) = 0 we have τ(ε, d) = 2O(d)√ε as desired.
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7 A Tight Analysis of Linearity Testing

Consider the following promise problem. Given a function f : {0, 1}n → {−1, 1} and a small ε > 0,
we want to distinguish the two cases

1. f is linear;

2. Ud(f) ≤ ε.

We refer to such a test as a “relaxed linearity test of degree (d − 1).” As usual, we say that a
test has completeness c and soundness s if the test acceptes with probability ≥ c in case (1) and
with probability ≤ s + ε′ in case (2), where ε′ → 0 when ε → 0. If a test makes q queries and has
soundness s, then its amortized query complexity is q̄ = q/ log s−1.

For d = 2, this problem is the linearity testing problem. For d = 3, the only functions such that
U3(f) ≥ ε are functions that are correlated with degree-2 polynomials [Sam05], and so the test
is required to distinguish linear functions from functions that are far from being quadratic. For
d ≥ 4, it is conjectured that the only functions with U d(f) ≥ ε are those that are correlated with a
degree-(d − 1) polynomial, and, if so, such a test distinguishes linear functions from functions that
are far from low-degree polynomials. By our results, such a test also distinguishes linear functions
from functions where all variables have low influence.

We give a tight analysis of the error probability of such tests for a given number of queries.

7.1 The Linear Gowers Inner Product

For the sake of our analysis of the Hypergraph Test, it is convenient to study expressions of the
following form. Let {fS}S⊆[d] be a collection of 2d functions fS : {0, 1}n → [−1, 1], d ≥ 1, and
define their linear Gowers Inner Product as

〈{fS}〉LUd := E
x1,...,xd

∏

S⊆[d]

f

(

∑

i∈S

xi

)

As usual, an empty sum is zero. For example:

〈f∅, f{1}〉LU1 := E
x

f∅(0)f{1}(x)

〈f∅, f{1}, f{2}, f{1,2}〉LU2 := E
x,y

f∅(0)f{1}(x)f{2}(y)f{1,2}(x + y)

Where 0 = (0, . . . , 0) is the all-zero vector of {0, 1}n. We call it a linear inner product because,
for functions fS : {0, 1}n → R, the Gowers inner product is defined by picking at random an affine
subspace of {0, 1}n of dimension d, and then taking the product of the functions on all points of
the subspace. In the above expression, we do something similar but on a linear subspace.

We prove that if the linear Gowers inner product of a collection of functions is large, then the
regular Gowers inner product of a related collection of functions must also be large.
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Lemma 15 Let fS : {0, 1}n → [−1, 1] be functions, S ⊆ [d], and define the collection {gT }T⊆[d] as
gT = fT∪{d}. Then

|〈{fS}〉LUd | ≤
√

〈{gS}〉Ud

Proof:

|〈{fS}〉LUd | :=

∣

∣

∣

∣

∣

∣

E
x1,...,xd

∏

S⊆[d]

fS

(

∑

i∈S

xi

)

∣

∣

∣

∣

∣

∣

≤

√

√

√

√

√ E
x1,...,xd−1





∏

S⊆[d],d6∈S

fS

(

∑

i∈S

xi

)





2

×

√

√

√

√

√ E
x1,...,xd−1



E
xd

∏

S⊆[d],d∈S

fS

(

∑

i∈S

xi

)





2

≤

√

√

√

√

√ E
x1,...,xd−1



E
xd

∏

S⊆[d],d∈S

fS

(

∑

i∈S

xi

)





2

=

√

√

√

√

√ E
x1,...,xd−1



E
x

∏

S⊆[d],d∈S

fS



x +
∑

i∈S−{d}
xi







 ·



E
y

∏

S⊆[d],d∈S

fS



y +
∑

i∈S−{d}
xi









=

√

√

√

√ E
x,y,x1,...,xd−1

∏

T⊆[d−1]

fT∪{d}

(

x +
∑

i∈T

xi

)

fT∪{d}

(

y +
∑

i∈T

xi

)

≤
√

〈{gT }〉Ud

after the change of variable y → x + xd. �

Lemma 16 Let fS : {0, 1}n → [−1, 1] be functions, S ⊆ [d], such that 〈{fS}〉LUd ≥ ε and

Ex f[d](x) = 0.

Then there is a variable i such that XInf i({fS}) ≥ ε4/2O(n).

Proof: Define gT := fT∪{d}. Then we have

1. Ex g[d](x) = Ex f[d](x) = 0,

2. 〈{gT }〉Ud ≥ (〈{fS}〉LUd)2 ≥ ε2.

From Lemma 8 we derive that there is a variable i such that 4XInf i({gT }) ≥ ε4/2O(d). Each function
fS occurs at most twice in the collection {gT }, and so it must be XInf i({fS}) ≥ 4XInf i({gT }) ≥
ε4/2O(d). �
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7.2 Positive Results on Relaxed Linearity Testing

Given a hypergraph H = ([k], E), we can define a relaxed linearity test associated with H by

H-Test
choose x, x1, . . . , xk uniformly at random in {0, 1}n

accept if and only if
∀e ∈ E :

∏

i∈e f
(

xi
)

= f
(
∑

i∈e xi
)

Then we have the following result.

Theorem 17 Let d ≥ 2 and let H = ([k], E) be an hypergraph such that each edge of H contains
at most d vertices.

Them the H-Test is a degree-(d− 1) relaxed linearity test of completeness 1 and soundness at most
1/2|E|.

We remark that this result was first proved in [Sam05], using a different approach.

For the proof of Theorem 17 and of results in the next section, it will be convenient to use the
following “Vazirani XOR Lemma,” whose proof is immediate.

Lemma 18 Let X1, . . . , Xm be random variables taking values in {−1, 1}. Then

Pr[X1 = 1 ∧ X2 = 1 ∧ · · · ∧ Xm = 1] =
1

2m

∑

S⊆[m]

∏

i∈S

Xi

Using Lemma 18, we see that the probability that the H-Test accepts a function f is equal to

1

2|E|
∑

E′⊆E

∏

e∈E

(

∏

i∈e

f(xi)

)

· f
(

∑

i∈e

xi

)

=
1

2|E| +
1

2|E|
∑

E′⊆E,E′ 6=∅

∏

e∈E

(

∏

i∈e

f(xi)

)

· f
(

∑

i∈e

xi

)

We will also need two results from [Gow01, GT04]. The first one is [Gow01, Lemma 3.8], and it
states that for every collection {fS} of functions:

∣

∣

∣
〈{fS}〉Ud

∣

∣

∣
≤
∏

S

(

Ud (fS)
)1/2d

The other is [GT04, 5.7] and states that for every f and d ≥ 2,

Ud−1(f) ≤
√

Ud(f)

We now proceed with the proof of Theorem 17.

Proof:[Of Theorem 17] It’s clear that a linear function is accepted with probability 1.
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If the H-Test accepts with f probability more than 1/2|E| + ε, then there is a non-empty E ′ ⊆ E
such that

∏

e∈E′

(

∏

i∈e

f(xi)

)

· f
(

∑

i∈e

xi

)

≥ ε (27)

Let d′ be the size of the largest edge in E ′, and, without loss of generality, assume that the edge
(1, . . . , d′) is in E′. Fix the variables xd′+1, . . . , xk to values that maximize (27). Then, (27) becomes

∏

S⊆[d′]

fS

(

∑

i∈S

xi

)

≥ ε

where f∅ is the constant function equal to the product of the terms of (27) that depend only on
xd′+1, . . . , xk, f{1}(x1) is the product of the terms of (27) that depend only on x1 and xd′+1, . . . , xk,

and so on. In particular, f[d′](x
1 + · · · + xd′) = f(x1 + · · · + xd′).

We thus have

〈{fS}〉LUd′ ≥ ε

By Lemma 15, there are functions {gS} such that g[d′] = f and 〈{gS}〉Ud′ ≥ ε2.

Since all the functions involved are boolean, and thus their uniformity norms are at most 1, we
conclude

ε2 ≤
∣

∣

∣〈{gS}〉Ud′

∣

∣

∣ ≤ min
S

|Ud′ (gS) |1/2d′ ≤ |Ud′ (f) |1/2d′

And, finally, U d(f) ≥
(

Ud′(f)
)2d−d′

≥ ε2d+1
. �

In particular, taking H to be the complete hypergraph on k vertices with at most d vertices per
edge, leads to a hypergraph linearity test with

∑d
i=1

(

k
i

)

queries, and soundness 1

2 � d
i=2 (k

i)
. The

amortized query complexity of this test, for k � d, is q̄ ≤ 1 + O
(

1
q(d−1)/d

)

.

Next, we show that no linearity test can do better.

We do it in two steps. The first is to show that the amortized query complexity of any hypergraph

test cannot be better than 1 + Ω
(

1
q(d−1)/d

)

for q queries.

The second step builds on the first, and shows that any non-adaptive linearity test with perfect
completeness cannot do better under this promise, namely it will have amortized query complexity

of at least 1 + Ω
(

1
q(d−1)/d

)

for q queries.

7.3 Lower Bound for the H-Test

We prove a lower bound for the H-Test by describing an explicit function f : {0, 1}n → {−1, 1},
which has small d-th uniformity norm, and for any hypergraph H the acceptance probability of the
H-Test on f is large.
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Proposition 19 Fix d ≥ 2 and fix an hypergraph H = ([k], E) such that all edges have at most d
vertices. For n a multiple of d, let f : {0, 1}n → {−1, 1} be defined as

f(x1, . . . , xn) := (−1)x1x2···xd+xd+1···x2d+···

Then Ud(f) ≤ 2−Ω(n), and the H-Test accepts f with probability at least

max
{

1/2|E|, 2−
� d

i=2 (k
i)
}

The lower bound on amortized query complexity of hypergraph tests follows immediately, if we
recall that the number of queries is |E| + k, and consider the two cases: |E| ≤ ∑d

i=2

(

k
i

)

, or

|E| >
∑d

i=2

(

k
i

)

.

Proof: We first show U d(f) to be small.

Some additional notation: Let gi(x) = xi·d+1xi·d+2 · · · x(i+1)·d, and let g(x) = x1x2 · · · xd +

xd+1 · · · x2d + · · · =
∑n/d−1

i=0 gi. Let fi = (−1)gi .

Then f =
∏n/d−1

i=0 fi and Ud(f) =
∏n/d−1

i=0 Ud(fi) =
(

Ud(f0)
)n/d

. Thus it remains to show that
Ud(f0) is bounded away from 1.

Ud(f0) = Ud ((−1)g0) = E
x,x1,...,xd

(−1)
�

S⊆[d] g0(x+
�

i∈S xi)

We may assume that the variables xi live in {0, 1}d, and then g0 is just the AND function. Therefore
∑

S⊆[d] g0

(

x +
∑

i∈S xi
)

counts the number of times the complement 1− x of x is representable as

a linear combination of x1...xd. This number is odd (= 1) iff x1...xd are linearly independent and
is even otherwise. Thus

Ud(f0) = 1 − 2Pr[x1...xd are linearly independent]

and this is easily seen (and well-known) to be a positive constant bounded away from 1.

The proof that the acceptance probability of f is high closely follows the proof of Proposition 15
in [ST00]. That proposition is a special case d = 2 of Proposition 19. We will repeat parts of the
proof since many definitions need to be modified, and for completeness, but will omit proofs of
intermediary steps if they are similar.

First, the probability of f to be accepted is

1

2|E|
∑

S⊆E

E
x1,...,xk

[

∏

T∈S

∏

i∈T

f(xi) · f
(

∑

i∈T

xi

)]

(28)

In order to simplify this expression, we need to introduce some notation. Let F = {{1}, ..., {k}} ∪
E := {F1...Fq}, be a family of all the vertices and the edges of H, viewed as subsets of {1, . . . , k}.
Let A be a k × q zero-one matrix whose q columns are given by F1...Fq , which we view as 0, 1
vectors of length k (in particular, the first k columns of A form the k× k identity matrix). Let uT ,
for T ∈ E be a zero-one vector of length q which is 1 if Fi is either T or a singleton, corresponding
to a vertex than T passes through; and 0 otherwise.
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For R ⊆ 2[k], let E(f,R) := Ex1,...,xk

[
∏

R∈R f
(
∑

l∈R xl
)]

.
Let U = Span (uT )T∈E be a t-dimensional subspace of Z

q
2 then, for a boolean f , (28) is

1

2|E|
∑

S⊆E

E
x1,...,xk





∏

i : � T∈S uT (i)=1

f





∑

l∈Fi

xl







 =

1

2t

∑

u=(u(1),...u(q))∈U

E
x1,...,xk





∏

i : u(i)=1

f





∑

l∈Fi

xl







 =

1

2t

∑

u=(u(1),...u(q))∈U

E(f, {Fi : u(i) = 1}). (29)

We will show many of the terms E(f, {Fi : u(i) = 1}) are 1.

Definition 20 A family R ⊆ 2[k] is an “even cover”, iff every subset T ⊆ [k], |T | ≤ d is covered
an even number of times by the sets R ∈ R.

The proofs of the following three lemmas are easily adaptable from the proofs of the corresponding
statements (Lemmas 17,18,19) in [ST00].

Lemma 21 Let R ⊆ 2[k]. If R is an even cover, than E(f,R) = 1. For any R, E(fn,R) ≥ 0.

Proof: Omitted. �

Lemma 22 The number of vectors u ∈ U , such that the family R = {Fi : u(i) = 1} is an even

cover, is at least max
{

1, 2t− � d
i=2 (k

i)
}

.

Proof: Omitted. �

Lemma 23
t ≤ |E|.

Proof: Omitted. �

Proposition 19 now follows from lemma 21, lemma 22,
lemma 23 and (29). �

34



7.4 Lower Bounds for Arbitrary Test

We now pass to our more general result, that holds for any test, including tests with completeness
smaller than 1. Recall that a test making q-queries is called non-adaptive if it makes the q queries
simultaneously, instead of using the answer to the first query to decide how to make the second
query, and so on.

Theorem 24 let T be a non-adaptive test that makes q queries and that is a degree (d−1) relaxed
linearity test with completeness c and soundness s for functions f : {0, 1}n → {−1, 1}.
Then

1 − c + s ≥ 2
−q+Ω

�
1

q(d−1)/d �
.

Equivalently, the amortized query complexity of T is at least 1 + Ω
(

1
q(d−1)/d

)

.

Proof: We will show that (1 − c) + s is at least ε = εH − 2−Ω(n), where εH is the best error
achievable by a hypergraph test after q queries. The theorem will then follow from Proposition 19.

By von Neumann’s minimax theorem (also known as Yao’s pronciple) it is enough to construct two
distributions P and Q on boolean functions, P supported on linear functions and Q on functions
with small U d norm, such that such that for any subset X = {x1...xq} of the boolean cube the distri-
butions P ′ and Q′ induced by P and Q on {0, 1}q by evaluating a function f ∼ P (correspondingly
f ∼ Q) on X are at most 1 − ε′ apart.

For a function f : {0, 1}n → R, and an n×n matrix A over GF2 let fA be given by fA(x) = f(Ax).

Now, fix a non-zero linear function `, and let f = f(x1, . . . , xn) := (−1)x1x2···xd+xd+1···x2d+···. The
distribution P is taken to be uniform over the functions {`A : A is invertible} and the distribution
Q is taken to be uniform over the functions {fA : A is invertible}.
Observe that P is supported on linear functions. In fact, P is uniform over all non-zero linear
functions. On the other hand f has a small U d norm, by Proposition 19. The following lemma
shows the same for the functions fA.

Lemma 25 For a function f : {0, 1}n → R, and an invertible n × n matrix A over GF2 holds

Ud(f) = Ud (fA)

Proof:

Ud (fA) = E
x,x1,...,xd

∏

S⊆[d]

fA

(

x +
∑

i∈S

xi

)

= E
x,x1,...,xd

∏

S⊆[d]

f

(

Ax +
∑

i∈S

Axi

)

=

E
x,x1,...,xd

∏

S⊆[d]

f

(

x +
∑

i∈S

xi

)

= Ud(f)

The third equality follows from the fact that if a (d+1)-tuple (x, x1, ..., xd) is distributed uniformly
in {0, 1}n(d+1) , then so is the (d + 1)-tuple (Ax,Ax1, ..., Axd). �
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Since the distributions P and Q are invariant under invertible linear transformations, the induced
distributions P ′ and Q′ are determined by the linear structure of X, namely linear dependencies
between x1...xq. Let the linear rank of the vectors x1, . . . , xq over GF2 be k. We will assume
x1, . . . , xk are linearly independent, and xk+i =

∑k
j=1 aijx

j for i = 1, . . . , q − k.

In the remainder of the proof we assume n � k and call an event negligible if its probability is
exponentially small in n.

The distributions P ′ and Q′ are almost precisely modelled by the following experiments: Choose
y1, . . . , yk independently at random, set yk+i =

∑k
j=1 aijy

j, for i = 1, . . . , q − k, and return

`(y1), . . . , `(yq) or f(y1), . . . , f(yq) correspondingly. The only caveat comes from the negligible
event that y1, ..., yk are linearly dependent.

For n � k, the distribution P ′ is, up to a negligible probability, given by choosing the first k bits
uniformly at random, and setting the other q − k bits according to specified linear dependencies.

Consider the distribution Q′. By proposition 19 the probability that for i = 1, . . . , q − k holds
f(yk+i) =

∑k
j=1 aijf(yj) is at least εH . Observe that in this case the q-tuple we deal with has no

linear contradictions and thus belongs to the support of P ′. Call such q-tuple “linear”. We have
just proved that, up to a negligible factor,

Pr{z : z is “linear”} ≥ εH

We have

‖P ′ − Q′‖ =
1

2
·
∑

z

∣

∣

∣P ′(z) − Q′(z)
∣

∣

∣ =
1

2
·
∑

z

[

max{P ′(z), Q′(z)} − min{P ′(z), Q′(z)}
]

≤

1 − 1

2
·
∑

z

min{P ′(z), Q′(z)} ≤ 1 − 1

2
·
∑

“linear” z

min{P ′(z), Q′(z)}

To complete the proof of the theorem we observe that, up to negligible factors, P ′(z) ≥ 2−k for all
“linear” z, and

Q′(z) = Q′(z1, . . . , zq) ≤ Pr{f(y1) = z1, ..., f(yk) = zk} =

k
∏

i=1

Pr{f(yi) = zi} = 2−k

Therefore
∑

“linear” z

min{P ′(z), Q′(z)} ≥
∑

“linear” z

P ′(z) − 2−Ω(n) ≥ εH − 2−Ω(n)

�

8 The PCP Construction

8.1 The Long-Code Test

We say that a function g : {0, 1}n → {−1, 1} is a codeword of the Long Code (or, simply, is a long
code) if there exists a coordinate i such that g(x1, . . . , xn) = (−1)xi , that is, if g = χ{i}. Note that
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if g is a long code then there is a coordinate that has degree-1 influence 1 for g. This is the extreme
case of large low-degree influence for a bounded function.

Given a collection of K balanced functions g1, . . . , gK : {0, 1}n → {−1, 1}, we are interested in
designing a test that distinguishes the following two cases:

• The functions gj are all equal to the same long code, that is, for some i ∈ [n] and for all
j ∈ [K], gj(x) = (−1)xi ;

• The degree-d cross-influence of the collection g1, . . . , gK is less than than δ, for some small δ
and large d.

More formally, we have the following definition.

Definition 26 (K-Function Long Code Test) A test that is given oracle access to K functions
g1, . . . , gK : {0, 1}n → {−1, 1} is said to have soundness s and completeness c if the following
conditions hold.

• If the functions gj are equal to the same long code, then the test accepts with probability ≥ c;

• For every ε > 0 there is a τ = τ(ε) > 0 and d = d(ε) such that if the test accepts with
probability ≥ s + ε, then there is a variable of degree-d cross-influence at least τ for the
functions gj.

Let H = ([t], E) be a hypergraph on t vertices.

For 0 < γ < 1/2, define the distribution µγ over {0, 1}n so that µγ(x) = γw(x)(1 − γ)n−w(x), where
w(x) is the number of ones in x.

The γ-noisy H-test is a (t + |E|)-function long code test defined as follows:

γ-noisy-H-Test ({ga}a∈[t]∪E)

choose x, x1, . . . , xt uniformly at random in {0, 1}n

for every i ∈ [t], sample ηi from µγ

for every e ∈ E, sample ηe from µγ

accept if and only if

∀e ∈ E.
∏

i∈e g(i)
(

ηi + xi

)

= g(e)
(

η(e) +
∑

i∈e xi

)

Remark 2 In the definition of K-function long-code test, we index functions by integers 1, . . . ,K,
while in the definition of the Hypergraph Test we let the given functions be indexed by elements of
[t] ∪ E. We hope the reader is not too bothered by this abuse of notation.

8.2 Analysis of the Hypergraph Test

In this section we prove the following theorem.

Theorem 27 For every hypergraph H = ([t], E), and every γ > 0, the γ-noisy H-test is a (t+|E|)-
function long code test with completeness 1 − (t + 1)γ|E| and soundness 1/2|E|.
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The completeness part is clear.

For the soundness part, as in Section 7.2, we can write the probability that the test accepts a given
set of oracle functions as

∑

E′⊆E

1

2|E| E
x1,...,xt,{ηi,ηe}

∏

e∈E

∏

i∈e

g(i)
(

ηi + xi

)

· g(e)

(

η(e) +
∑

i∈e

xi

)

=
1

2|E| +
∑

E′⊆E, E′ 6=∅

1

2|E| E
x1,...,xt,{ηi,ηe}

∏

e∈E

∏

i∈e

g(i)
(

ηi + xi

)

· g(e)

(

η(e) +
∑

i∈e

xi

)

and so if thest accepts with probability at least 2−|E| + ε there is a subset of tests E ′ ⊆ E such that

E
x1,...,xt,{ηi,ηe}

∏

e∈E′

∏

i∈e

g(i)
(

ηi + xi

)

· g(e)

(

η(e) +
∑

i∈e

xi

)

> ε

It remains to prove the following lemma (E in the lemma plays the role of E ′ above).

Lemma 28 Let gj : {0, 1}n → {−1, 1} be functions and H = ([t], E) be a hypergraph such that

E
x1,...,xt,{ηi,ηe}

∏

e∈E

∏

i∈e

g(i)
(

ηi + xi

)

· g(e)

(

η(e) +
∑

i∈e

xi

)

> ε (30)

where the η’s are sampled according to µγ . Then there is a variable i that has degree-d(ε, γ) cross-
influence at least δ(ε, γ) > 0 for the functions {g(a)}a∈[t]∪E.

Proof: Since the g(a) map to {−1, 1}, we can write Equation 30 equivalently as

E
x1,...,xt,{ηi,ηe}

(

∏

i∈Odd

g(i)
(

η(i) + xi

)

)

·
(

∏

e∈E

g(e)

(

η(e)
∑

i∈e

xi

))

> ε (31)

Where Odd denotes the set of vertices of odd degree in the hypergraph ([t], E).

Now, define G(x) = Eη g(η + x), where η is sampled from µγ .

Then (30) becomes

E
x1,...,xt

(

∏

i∈Odd

G(i) (xi)

)

·
(

∏

e∈E

G(e)

(

∑

i∈e

xi

))

> ε (32)

Let k be the maximum size of an hyperedge in E, and assume, without loss of generality that H
has an hyperedge e = (1, 2, 3, . . . , k). Fix the variables xk+1, . . . , xt in (32) in such a way that the
average over x1, x2, . . . , xk is still at least ε. In particular, (32) becomes

E
x1,x1,...,xk

f∅(0)f{1} (x1) f{2} (x2) · · ·G(e) (x1 + x2 + . . . + xk) > ε (33)
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Where f∅(x) is the constant function equal product of all the terms in (32) that depend exclusively
on the fixed variables x(k+1), . . . , x(t), f{1} (x1) is the product of all the terms that depend only on
x1 and on xk+1, . . . , xt, and so on.

Note that each fS is a product of shifts of functions G(a). Furthermore, the index sets of a’s for
distinct fS are disjoint.

If we call f[k] := G(e), then Equation 33 says that

〈{fS}〉LUk > ε

Choose δ = δ(k, ε) = ε4/2O(k) to be small enough so that Lemma 16 implies that there are two
functions fS, fT , with S 6= T , and a variable i, such that Inf i(fS) and Infi(fT ) are both at least δ.

By previous observations on the relation between the fS and the G(a) and by Lemma 4, we have
that there is a δ′ and two functions Ga, Gb such that Infi(G

a) and Inf i(G
b) are both at least δ′.

Consider now the Fourier transform of a function G(x) := Eη g(η + x). It is easy to see that the
Fourier coefficients of G satisfy Ĝ(α) = (1 − 2γ)|α|ĝ(α). Therefore, for every degree bound d, we
have

Infi(G) =
∑

α:i∈α

Ĝ2(α) =
∑

α:i∈α

(1 − 2γ)|α|ĝ2(α) ≤ (1 − 2γ)d +
∑

α:i∈α,|α|≤d

g2(α) ≤ (1 − 2γ)d + Inf≤d(g)

This means that we can get Inf≤d
i

(

g(a)
)

, Inf≤d
i

(

g(b)
)

≥ δ′/2 if we choose d = O
(

γ−1 log(δ′−1)
)

. �

8.3 Composition and PCP Construction

The following theorem follows from Theorem 2 and Theorem 27 using standard techniques.

We need a couple of definitions. If f : {0, 1}n → {−1, 1} is a boolean function, then we define
its folding as the boolean function f defined as follows: f(0, x2, . . . , xn) := f(0, x2, . . . , xn) and
f(1, x2, . . . , xn) := −f(0, 1 − x2, . . . , 1 − xn).

The definition satisfies the following useful properties: (i) if f is a long code, then f = f , and, (ii)

for every f , Ex f(x) = 0, that is, f̂(∅) = 0.

Let f : {0, 1}n → R be a function, and π : [n] → [n] be a permutation in Sn. Then we let
f ◦ π : {0, 1}n → R be the function such that f ◦ π(x1, . . . , xn) := f(xπ(1), . . . , xπ(n)). Here the
interesting properties are that, for every coordinate i and degree bound t,

Inf≤t
π(i)(f) = Inf≤t

i (f ◦ π)

and that if f is the long code of i, g is the long code of j, and π(i) = π ′(j), then f ◦ π and g ◦ π′

are the same function.

Theorem 29 (Main) Suppose that the Unique Games Conjecture is true. Then, for every δ > 0,
and for every q ≥ 3,

NP = PCP1−δ,2q/2q+δ[O(log n), q]
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and, if we can write q = 2k − 1, then

NP = PCP1−δ,(q+1)/2q+δ[O(log n), q]

Proof: Let H = ([t], E) be an hypergraph such that t + |E| = q and t ≤ 1 + log2 q. (Or
t = log2(q + 1) if it is possible to write q = 2t − 1.)

Fix a small constant δ, and consider the δ-noisy H-test. From Theorem 27 we have that there are
constants τ(δ) and d(δ) such that if {ga}a∈[t]∪E are functions accepted by the test with probability

at least 1/2|E| then the degree-d(δ) cross-influence of the functions is at least τ(δ).

Let γ be a constant smaller than δτ 2/d2.

From Theorem 2 we know that, if the Unique Games conjecture is true, there is a reduction from
SAT to q-ary unique games with the property that a satisfiable instance ϕ of SAT is mapped into
a unique game Uϕ of strong value at least 1 − γ and an unsatisfiable instance ϕ of SAT is mapped
into a unique game Uϕ of weak value at most γ.

A PCP for a formula ϕ is a long code for each of the variables of the unique game Uϕ. Let n be
size of the alphabet of Uϕ.

We consider the following verifier:

• Pick at random a constraint of Uϕ, say that it involves the variables v1, . . . , vq and the
permutations π1, . . . , πq. Let f1, . . . , fq be the functions written in the proof being checked
and which, supposedly, are the long codes of assignments for the variables v1, . . . , vq.

• Run the δ-noisy H-test using the functions f 1 ◦ π1, . . . , f q ◦ πq.

Completeness of the test If ϕ is satisfiable, then consider the proof where for each variable v
we write the function f that is the long code of A(v), with A() being an assignment that strongly
satisfies a 1−γ fraction of constraints. Then the test accepts with probability at least (1−γ) · (1−
qδ) ≥ 1 − (q + 1)δ.

Soundness of the test Suppose that the test accepts with probability at least 1/2 |E| + 2δ.
Consider the following randomized assignment: for every variable v, consider the function f written
in the proof corresponding to v; consider the set of coordinates i such that Inf≤d

i (f) ≥ τ ; if the set
is empty, give v a random value, otherwise, give v a randomly chosen value from the set. Note that
if the set is non-empty then it has size at most d/τ .

Call a constraint good if the H-test accepts with probability at least 1/2|E|+δ when that constraint
is chosen by test. Then at least a δ fraction of constraints is good.

Consider a good constraint, and say that it involves the variables v1, . . . , vq and the permutations
π1, . . . , πq. Let f1, . . . , fq be the functions written in the proof corresponding to the variables
v1, . . . , vq.

Since the constraint is good, there is a variable i that has degree-d cross-influence at least τ for
the functions f j ◦ πj. That is, there are two functions fa, fb such that Inf≤d

i (fa ◦ πa) ≥ τ and

Inf≤d
i (f b ◦ πb) ≥ τ . Then the randomized assignment described above assigns with probability at
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least τ/d the value π−1
a (i) to va, and with probability at least τ/d the value π−1

b (i) to vb. When
this happens, the constraint is weakly satisfied.

Overall, the randomized assignments weakly satisfies on average at least a δτ 2/d2 > γ fraction of
constraints, which proves that ϕ was satisfiable.

Conclusion Wrapping up, our PCP verifier has completeness at least 1 − qδ and soundness at
most 1/2|E| + 2δ. Since δ was chosen arbitrarily at the beginning, the theorem follows. �

8.4 Inapproximability Results

It is an immediate consequence of Theorem 29 that, assuming the unique games conjecture, Max
kCSP cannot be approximated within a factor larger than (k + 1)/2k if k is of the form 2t − 1. It
follows from Theorem 29 and the reductions in [Tre01] that, assuming the unique games conjecture,
the Maximum Independent Set problem in graphs of maximum degree D cannot be approximated
within a factor larger (log D)c/D, for sufficiently large D, where c is an absolute constant.
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